説明

試料濃縮装置および試料濃縮方法

【課題】流体に含まれる試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができる試料濃縮装置を提供する。
【解決手段】試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出する試料濃縮装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流路における微量な試料を含む流体を濃縮する試料濃縮装置および試料濃縮方法に関するものである。
【背景技術】
【0002】
微細構造を有する分析装置は、机上サイズの機器と比べ、感度の向上、試料量の低減、高速分析という利点が挙げられている。また、マイクロ・トータル・アナリシス・システム(μ−TAS)と呼ばれる、微小空間を利用して検体採取から各種工程を経て分析までを行うというコンセプトの発展により、それらに関する技術が注目を集めている。生体試料の分析において、質量分析法、電気泳動法などが用いられるが、それらの技術もマイクロチップ化することができる。
【0003】
しかし、マイクロ流体デバイスにおける分析は微細な構造を有しているため、従来の大きさのフローインジェクション装置において扱える最小量をも下回る試料量が必要とされることが多い。従来の電気泳動チップにおいては、図3における微量の試料47を注出する際に、デバイス上でマイクロ流路を注入用流路44と本流路45を十字型に交差させるように形成し、共有部46の容積相当の試料量を注出する方法が採られていた(特許文献1参照)。この注出時において、まず注入用流路44方向に電位勾配を付与し、試料47を最低でも共有部46部分まで満たしたうえで、試料の流れを印加電圧を調整して本流路45方向に切り換えることにより一定容積の試料48を注出するという作業が必要となる。
【0004】
また、図4に、従来技術の流路共有部において試料を吸着させてから注出する方法を示す。まず、注入用流路52を流れてきた試料54を、共有部55において流路表面に固定化されているプローブに吸着させる。次に、本流路53方向に移送するときには、試料54を脱着させて試料56を注出するという方法もある。この方法は、共有部55において注入用流路52に注入された試料を濃縮させたうえで本流路53方向へと注出していることになる(特許文献2参照)。
【0005】
さらに、メンブレンを用いる従来技術として、図5に示す様に、注入用流路60内でメンブレン63方向へレザーバ57より試料64を移送し続けることにより共有部62において試料64を濃縮させる。そして、流れを本流路61方向に切り換えて、微量試料を注出する方法もある(非特許文献1参照)。
【0006】
また、メンブレンフィルタ、吸着分子などを利用せずに試料を濃縮する従来技術として、図6における、超音波発生源67、68を用いて定在波70を付与し、試料69を流路66内の一定範囲に集めて所望の流路71へ注出する方法が開示されている(特許文献3参照)。
【特許文献1】米国特許第5900130号明細書(第2項、図1a、4b)
【特許文献2】特開2005−274405号公報(第17項、図1)
【特許文献3】特開平9−122480号公報(第7項、図6)
【非特許文献1】Julia Khandurina, Stephen C.Jacobson, Larry C.Waters, Robert S.Foote,and Michael Ramsey,“Microfabricated porous Membrane Structure for Sample Concentration and Electrophoretic Analysis,”Analytical Chemistry,1999,Vol.71,No.9,pp1815−1819,(第1817項、図3)
【発明の開示】
【発明が解決しようとする課題】
【0007】
前記十字型流路による微量試料注出方法において、注入用流路44に多量の、最低でも注入口41から共有部46までの試料量を要するが、実際に本流路45方向に注出される試料48は、共有部46の容積で決定された全試料量の一部である。そのため、注出に要するデッドボリュームが多いという課題がある。また、注出試料量がマイクロ流路の共有部の容積に限られるという制限もある。
【0008】
また、前記共有部において試料を吸着させる方法おいては、注出される試料量は共有部55における試料54の吸着効率に依存するため、定量性に問題が生じる。
前記メンブレンを用いた方法において、電気浸透流以外の送液方法では、試料が本流路61方向へ流れを切り換える以前に、本流路61方向へ移送されてしまい、定量性に課題が生じる。
【0009】
さらに、前記超音波を用いた注出方法において、試料69の流路71への回収は、定量性を考慮しておらず、試料69の一部が所望の流路内に納まらない可能性もあるという問題がある。さらに、試料69の回収方法は、キャピラリ71を物理的に流路に挿入して試料69をそのキャピラリ71内に収納するため、流路はマイクロ流路ではなくキャピラリを動かすことのできるのに十分な大きさを有するものにしか適用できないという課題がある。
【0010】
本発明は、この様な背景技術に鑑みてなされたものであり、注入用流路内におけるデッドボリュームを低減し、流体に含まれる微量な試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができる試料濃縮装置および試料濃縮方法を提供するものである。
【課題を解決するための手段】
【0011】
上記の課題を解決する微量試料濃縮装置は、試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。
【0012】
上記の課題を解決する微量試料濃縮方法は、試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。
【発明の効果】
【0013】
本発明は、流体に含まれる試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができる試料濃縮装置および試料濃縮方法を提供することができる。
本発明の試料濃縮装置および方法においては、マイクロ流路であるる注入用流路内に存在する流体に含まれる試料を共有部に濃縮することにより、バルブで閉じられた空間内の全試料量を効率的に本流路に注出できるという効果を有する。
【0014】
また、注出する試料の容積は共有部の容積のみに制限されないので、注出する試料量の自由度が増加するという効果がある。
また、注入用流路の容積をバルブによって定めることにより、濃縮した試料を定量的に本流路に注出できるという効果を有する。
【発明を実施するための最良の形態】
【0015】
以下、本発明を詳細に説明する。
本発明に係る微量試料濃縮装置は、試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。
【0016】
前記振動波発生手段は、超音波帯の振動波を発生する手段であることが好ましいが、これに限定されない。具体的な振動波発生手段としては、超音波発生源と反射板、または2つの超音波発生源からなり、前記共有部に超音波の定在波の節または腹を付与することが好ましい。
【0017】
前記試料は、細胞、粒子または粒子に吸着した分子であることが好ましく、分子はDNAやたんぱく質を含んだ生体分子であってもよい。
前記流路の断面寸法の幅および深さの少なくとも1つが、0.1μm以上1000μm以下であることが好ましい。
【0018】
本発明に係る微量試料濃縮方法は、試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。
【0019】
前記試料の注出量が、共有部の容積より小さい、等しいまたは大きいことが好ましい。
本発明は、振動波を用いて流体に含まれる試料を濃縮するが、その原理は振動波発信源より生ずる音響反射波を用いるものである。定在波を構成したさいの節または節からの距離xに存在する粒子が受ける力Fは
【0020】
【数1】

【0021】
と表現される。ここで、p0は音圧振幅、Vcは粒子の体積、λは音波波長、kは波数ベクトルであり、φ、β、およびρは、
【0022】
【数2】

【0023】
で表され、ρcは粒子の密度、ρwは溶媒の密度、βcは粒子の圧縮率、βwは溶媒の圧縮率である。ここで、φはφ因子と呼ばれ、正の値においては粒子が定在波の節に集積され、負の値においては粒子が定在波の腹に集積される。
【0024】
本発明は上記原理を利用して、注入用流路内に存在する試料を注入用流路と本流路で構成される共有部に濃縮させ、その後に本流路に注出する。
図1は本発明の試料濃縮装置の一実施態様を示す概念図である。以下、図1を用いて詳細に説明する。
【0025】
本発明の試料濃縮装置は、試料を含む流体を注入する2つの注入用流路4、5と、前記流体を注出する本流路6と、前記注入用流路4、5と本流路6が接続する位置に設けられた共有部7と、前記注入用流路から共有部7を通過して本流路へ流れる流体の流れを開閉するバルブ10、11、12、13と、前記バルブにより注入用流路の一部と共有部に保持された流体に超音波を付与する超音波発生手段80とを有する。
【0026】
注入用流路4、5、および本流路6はマイクロ流路からなる。本発明において好ましいマイクロ流路の断面寸法としては、幅および深さの少なくともいずれかの断面寸法が0.1μm以上1000μm以下である。幅および深さの両方の断面寸法は異なっても、同じでもよい。注入用流路4と流路6との接触地点から、注入用流路5と本流路6との接触地点までの流路を共有部7とする。また、マイクロ流路の構成が、注入用流路4と本流路6の延長方向に注入用流路5が存在する、すなわち十字型の流路構成となってもかまわない。また、本流路6は濃縮、分析目的だけに用いられる必要はなく、試料注出後のいかなる工程を経るものであってもよい。
【0027】
本発明の試料濃縮装置は、材質はガラス、セラミック、金属、プラスチック、またはそれらのハイブリッドなど特に限定を設ける必要はないが、できる限り超音波を吸収しにくい部材であることが望ましい。
【0028】
バルブ10、11、12、13は特に形態に制限を設ける必要がないが、ダイヤフラムによって流路を塞ぐ形態などの複数回開閉動作を行うことができる形態が好ましい。バルブ10は注入用流路4が共有部7方向へ曲がる直前に位置し、バルブ11は本流路6におけるレザーバ2の方向への共有部7との境に位置する。バルブ12は注入用流路5において共有部7より離れる方向に曲がった直後に配置され、バルブ13は本流路6におけるレザーバ2の方向と反対側の共有部7との境に配置されている。
【0029】
また、注入用流路4におけるレザーバ1よりバルブ10までの距離、および注入用流路5におけるバルブ12よりレザーバ3までの距離は、必要な試料量を低減するために、できる限り短いことが好ましい。
【0030】
前記超音波発生手段80は、超音波発生源8と、反射板または超音波発生源9とからなる。超音波発生源8は少なくとも共有部7の本流路6方向の長さ以上の長さを有し、バルブ10、11、12および13で閉じられた空間全体を覆う幅で超音波を発振することができ、できる限り注入用流路4に近い位置に設置される。図1における注入用流路5にできる限り近い位置に設置された反射板または超音波発生源9は、超音波発生源8と同じ大きさのもう一つの超音波発生源であるか、または超音波発生源8からの音波を反射する反射板でもよく、超音波発生源8と対になって、定在波を構成できればよい。
【0031】
試料溶液15は、ビーズ、細胞またはビーズに固定化された分子などが適切な濃度で溶媒に稀釈されたものが挙げられる。
【実施例】
【0032】
以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
図1を用いて、実施例1を説明する。
【0033】
まず、バルブ10、12を開放し、レザーバ1から注入用流路4、共有部7、注入用流路5を経て、レザーバ3方向へあらかじめ濃度が調整された試料を含有する試料溶液15を注入する。なお、バルブ11、13は閉じている。このときの、試料溶液の移送方法は、マイクロ流路における毛細管現象を利用する方法、外部ポンプによるレザーバ1への加圧、またはレザーバ3における減圧による圧力流、レザーバ1とレザーバ3間での電気浸透流や誘電泳動など、特に方法を限定する必要はない。試料溶液15の流れがバルブ12を通過した後にバルブ12、バルブ10の順でバルブを閉じる。
【0034】
次に、超音波発生源8を作動させて注入流路方向へ音波を発振する。図1における注入用流路5に近い位置に設置された9において、9が反射板であるとすると、超音波発生源8のみの周波数制御によって、共有部7に定在波の節または腹を構成することができる。また、9がもう一つの超音波発生源とすると、超音波発生源8から発振された音波と超音波発生源9から発振された波の重ね合わせにより、共有部7に定在波の節または腹を構成することができる。また、共有部7以外の位置においても、音波の重ね合わせにより節または腹を構築することができ、その場合超音波の節または腹で試料溶液15をトラップしたまま共有部7へと移送させても良い。
【0035】
注入用流路4、5内に超音波の節または腹が一つできる、つまり定在波14に示されるような超音波発生源8と反射板9(または超音波発生源9)の距離を半波長とするように周波数を調節し、節または腹が共有部7に配置されるようにする。節を構成するか腹を構成するかは、濃縮したい試料のφ因子による。このとき、注入用流路4、5内のバルブ10、12、および本流路6内のバルブ11、13で閉じられた空間全体において、試料溶液15は共有部7へ集積する方向16、17へ向かって力が働き、共有部7へと濃縮される。なお、図1においては定在波14が共有部7において節を構成するように図示したが、腹を構成するようにすることもでき、本実施例と同様に試料を濃縮させることが可能である。
【0036】
試料溶液15が共有部7へ濃縮されたのち、バルブ11、13を開放して、本流路6に接続するレザーバ2より加圧して試料を本流路6へ注出する。また、加圧による圧力流だけでなく、電気浸透流、誘電泳動などの方法によって、試料は本流路6へ注出されてもよく、特に試料溶液15の移送方法を限定する必要はない。
【0037】
実施例2
実施例2として、複数の本流路において本発明の応用を、図2を用いて説明する。図2は本発明の試料濃縮装置の他の実施態様を示す概念図である。
【0038】
注入用流路22は両端においてレザーバ18、21を有し、レザーバ18から共有部25方向へ注入用流路22が曲がる直前にバルブ29、共有部26からレザーバ21方向へ注入用流路19が曲がった直後にバルブ32を設置する。共有部25と本流路23とのそれぞれの境にバルブ30、33を配置し、共有部26と本流路24とのそれぞれの境にバルブ31、34を配置する。
【0039】
共有部25とは、注入用流路22と本流路23が交差した部分の領域を指す。同様に、共有部26は、注入用流路22と本流路24交差した部分の領域を指す。また、本実施例においては、注入用流路は1本の直線で図示されているが、実施例1のように交差せずに、接触しているだけでもかまわない。
【0040】
試料溶液36をバルブ29、32を開放して注入用流路22に注入し、試料溶液がバルブ32よりレザーバ21方向へ進行した後、バルブ32、29の順に閉じる。超音波発生源27と反射板あるいは超音波発生源である28の間に共有部25、26に節または腹が存在するような周波数に調整された定在波35を発振する。図2における、本流路が2本の場合、発振された超音波はちょうど1波長に相当する。
【0041】
超音波による力が発生し、注入用流路内に存在する試料溶液36は注入用流路22の存在位置において矢印37、38、39あるいは40方向への力を受けて共有部25、あるいは共有部26に濃縮される。その後、バルブ30、33を開放して本流路23に試料を注出し、バルブ31、34を開放して本流路24に試料を注出する。本流路23、24方向への試料溶液36の移送は、特に方法を限定する必要はなく、また、注出の時刻を同期させなくともよい。
【0042】
実施例2は2本の本流路に試料を注出する方法について述べたが、3本以上の本流路においても各本流路を半波長間隔に設置すると、超音波発信源の周波数を調節して各共有部に節または腹を構成し、本発明の試料注出方法を使うことができる。
【産業上の利用可能性】
【0043】
本発明の試料濃縮装置は、流体に含まれる試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができるので、マイクロ流路やキャピラリを用いた、細胞および生体分子を含んだ試料の分離および精製に用いられるためのマイクロフローインジェクションに利用することができる。
【図面の簡単な説明】
【0044】
【図1】本発明の試料濃縮装置の一実施態様を示す概念図である。
【図2】本発明の試料濃縮装置の他の実施態様を示す概念図である。
【図3】従来技術の十字型流路を用いた試料注出法を示す概念図である。
【図4】従来技術の試料濃縮法を用いた試料注出法を示す概念図である。
【図5】従来技術のフィルターを用いた試料注出法を示す概念図である。
【図6】従来技術の超音波を用いた試料濃縮法を示す概念図である。
【符号の説明】
【0045】
1、2、3 レザーバ
4 注入用流路
5 注入用流路
6 本流路
7 共有部
8 超音波発生源
9 反射板または超音波発生源
10 バルブ
11 バルブ
12 バルブ
13 バルブ
14 定在波
15 試料溶液
18、19、20、21 レザーバ
22 注入用流路
23、24 本流路
25、26 共有部
27 超音波発生源
28 反射板あるいは超音波発生源
29、30、31、32、33、34 バルブ
35 定在波
36 試料溶液
44 注入用流路
45 本流路
46 共有部
47 試料
48 試料
52 注入用流路
53 本流路
54 試料
55 共有部
56 試料
57 レザーバ
60 注入用流路
61 本流路
62 共有部
64 試料
66 流路
67、68 超音波発生源
69 試料
70 定在波
71 流路
80 超音波発生手段

【特許請求の範囲】
【請求項1】
試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする試料濃縮装置。
【請求項2】
前記振動波発生手段は、超音波発生源と反射板、または2つの超音波発生源からなり、前記共有部に超音波の定在波の節または腹を付与することを特徴とする請求項1に記載の試料濃縮装置。
【請求項3】
前記試料は、細胞、粒子または粒子に吸着した分子であることを特徴とする請求項1または2に記載の試料濃縮装置。
【請求項4】
前記流路の断面寸法の幅および深さの少なくとも1つが、0.1μm以上1000μm以下である請求項1乃至3のいずれかの項に記載の試料濃縮装置。
【請求項5】
試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする試料濃縮方法。
【請求項6】
前記試料の導入量が、共有部の容積より小さい、等しいまたは大きいことを特徴とする請求項5に記載の試料濃縮方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−292260(P2008−292260A)
【公開日】平成20年12月4日(2008.12.4)
【国際特許分類】
【出願番号】特願2007−137224(P2007−137224)
【出願日】平成19年5月23日(2007.5.23)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】