説明

軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブル

【課題】高い導電性を備え、かつ軟質銅材において高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線及びこれらを用いたケーブル、同軸ケーブルおよび複合ケーブルを提供すること。
【解決手段】4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金線において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金線。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高い導電性を備え、軟質材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルに関するものである。
【背景技術】
【0002】
近年の科学技術においては、動力源としての電力や、電気信号など、あらゆる部分に電気が用いられており、それらを伝達するためにケーブルやリード線などの導線が用いられている。そして、その導線に用いられている素材としては、銅、銀などの導電率の高い金属が用いられ、とりわけ、コスト面などを考慮し、銅線が極めて多く用いられている。
【0003】
銅と一括りにする中にも、その分子の配列などに応じて、大きく分けて、硬質銅と軟質銅とに分けられる。そして利用目的に応じて所望の性質を有する種類の銅が用いられている。
【0004】
電子部品用リード線には、硬質銅線が多く用いられ、例えば、医療機器、産業用ロボット、ノート型パソコンなどの電子機器などに用いられるケーブルは、過酷な曲げ、ねじれ、引張りなどが組み合わさった外力が繰り返し負荷される環境下で使用されているため、硬直な硬質銅線は不的確であり、軟質銅線が用いられている。
【0005】
このような用途に使用される導線には、導電性が良好(高導電率)で、かつ、屈曲特性が良好であるという相反する特性が求められるが、今日までに、高導電性および耐屈曲性を維持する銅材料の開発が進められている(特許文献1、特許文献2参照)。
【0006】
例えば、特許文献1に係る発明は、引張強さ、伸び及び導電率が良好な耐屈曲ケーブル用導体に関する発明であり、特に純度99.99wt%以上の無酸素銅に、純度99.99wt%以上のインジウムを0.05〜0.70mass%、純度99.9wt%以上のPを0.0001〜0.003mass%の濃度範囲で含有させてなる銅合金を線材に形成した耐屈曲ケーブル用導体について記載されている。
【0007】
また、特許文献2に係る発明には、インジウムが0.1〜1.0wt%、棚素が0.01〜0.1wt%、残部が銅である耐屈曲性銅合金線について記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−363668号公報
【特許文献2】特開平9−256084号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に係る発明は、あくまでも硬質銅線に関する発明であり、耐屈曲性に関する具体的な評価はされておらず、より耐屈曲性にすぐれる軟質銅線についての検討は何等なされていない。また、添加元素の量が多いため、導電性が低下してしまう。軟質銅線に関しては、まだまだ十分に検討がなされたとはいえない。また、特許文献2に係る発明は、軟質銅線に関する発明であるが、特許文献1に係る発明と同様に、添加元素の添加量が多いため、導電性が低下してしまう。
【0010】
一方で、原料となる銅材料として無酸素銅(OFC)などの高導電性銅材を選択することで高い導電性を確保することが考えられる。
【0011】
しかしながら、この無酸素銅(OFC)を原料とし、導電性を維持すべく他の元素を添加せずに使用した場合には、銅荒引線の加工度をあげて伸線することにより無酸素銅線内部の結晶組織を細かくすることによって耐屈曲性を向上させるとする考え方も有効かもしれないが、この場合には、伸線加工による加工硬化により硬質線材としての用途には適しているが、軟質線材への適用ができないという問題がある。
【0012】
したがって、本発明の目的は、高い導電性を備え、かつ軟質銅材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルを提供することにある。
【課題を解決するための手段】
【0013】
上記目的を達成するために請求項1の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金線において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金線を提供するものである。
【0014】
請求項2の発明は、請求項1に記載の軟質希薄銅合金線であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金線である。
【0015】
請求項3の発明は、前記軟質希薄銅合金線の表面にめっき層を形成したことを特徴とする請求項1又は請求項2に記載の軟質希薄銅合金線である。
【0016】
請求項4の発明は、請求項1乃至請求項3のいずれか1項に記載の軟質希薄銅合金線を複数本撚り合わせたことを特徴とする軟質希薄銅合金撚線である。
【0017】
請求項5の発明は、請求項1乃至請求項4のいずれか1項に記載の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたことを特徴とするケーブルである。
【0018】
請求項6の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金板において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金板である。
【0019】
請求項7の発明は、請求項6記載の軟質希薄銅合金板であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金板である。
【0020】
請求項8の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金材料において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金材料である。
【0021】
請求項9の発明は、請求項8記載の軟質希薄銅合金材料であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金材料である。
【発明の効果】
【0022】
本発明によれば、高い導電性を備え、かつ軟質銅材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルを提供できるという優れた効果を発揮するものである。
【図面の簡単な説明】
【0023】
【図1】TiS粒子のSEM象を示す図である。
【図2】図1の分析結果を示す図である。
【図3】TiO2粒子のSEM像を示す図である。
【図4】図3の分析結果を示す図である。
【図5】本発明において、Ti―O―S粒子のSEM像を示す図である。
【図6】図5の分析結果を示す図である。
【図7】屈曲疲労試験の概略を示す図である。
【図8】400℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材13と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材7における屈曲寿命を測定したグラフである。
【図9】600℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材14と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材8における屈曲寿命を測定したグラフである。
【図10】実施材8の幅方向の断面組織の写真を表したものである。
【図11】比較材14の試料の幅方向の断面組織の写真を表したものである。
【図12】試料の表層における平均結晶粒サイズの測定方法について説明するための図面である。
【図13】実施材9の幅方向の断面組織の写真を表したものである。
【図14】比較材15の試料の幅方向の断面組織の写真を表したものである。
【図15】実施材9と比較材15の焼鈍温度と伸び(%)の関係を示す図である。
【図16】焼鈍温度500℃における実施材9の断面写真である。
【図17】焼鈍温度700℃における実施材9の断面写真である。
【図18】比較材15の断面写真である。
【発明を実施するための形態】
【0024】
以下、本発明の好適な一実施の形態を詳述する。
【0025】
先ず、本発明の目的は、導電率98%IACS(万国標準軟銅(InternationalAnneldCopperStandard)抵抗率1.7241×10-8Ωmを100%とした導電率)、100%IACS、更には102%IACSを満足する軟質型銅材としての軟質希薄銅合金材料を得ることにある。
【0026】
酸素濃度1〜2mass ppmの高純度銅(4N)を用い、実験室にて小型連続鋳造機(小型連鋳機)を用いて、溶湯にチタンを数mass ppm添加した溶湯から製造したφ8mmのワイヤロッドをφ2.6mm(加工度90%)にして軟化温度を測ると160〜168℃であり、これ以上低い軟化温度にはならない。また、導電率は、101.7%IACS程度である。よって、酸素濃度を低くして、Tiを添加しても、軟化温度を下げることができず、また高純度銅(6N)の導電率102.8%IACSよりも悪くなることがわかった。
【0027】
この原因は、溶湯の製造中に不可避的不純物として、硫黄を数mass ppm以上含み、この硫黄とチタンとでTiS等の硫化物が十分形成されないために、軟化温度が下がらないものと推測される。
【0028】
特に、半軟化温度を下げるためには、以下の方策を検討し、2つの効果を合わせることが好ましい。
【0029】
(a)素材の酸素濃度を2mass ppmを超える量に増やしてチタンを添加する。これにより、先ず溶銅中ではTiSとチタン酸化物(TiO2)やTi−O−S粒子が形成されると考えられる(図1、図3のSEM像と図2、図4の分析結果参照)。なお、図2、図4、図6において、PtおよびPdは観察のための蒸着元素である。
【0030】
(b)次に熟間圧延温度を、通常の銅の製造条件(950〜600℃)よりも低く設定(880〜550℃)することで、銅中に転位を導入し、Sが析出し易いようにする。これによって転位上へのSの析出又はチタンの酸化物(TiO2)を核としてSを析出させ、その一例として溶銅と同様Ti−O−S粒子等を形成させる(図5のSEM像と、図6の分析結果参照)。図1〜図6は、表1の実施例1の上から三段目に示す酸素濃度、硫黄濃度、Ti濃度をもつφ8mmの銅線(ワイヤロッド)の横断面をSEM観察及びEDX分析にて評価したものである。観察条件は、加速電圧15KeV、エミッション電流10μAとした。
【0031】
(a)と(b)により、銅中の硫黄が晶出と析出を行い、冷間伸線加工後に軟化温度と導電率を満足する銅ワイヤロッドができる。
【0032】
次に、本発明では、SCR連続鋳造圧延設備で製造条件の制限として(1)〜(3)を制限した。
【0033】
(1)組成について
添加元素として、Tiを選んだ理由は、これらの元素は他の元素と結合しやすい活性元素であり、Sと結合しやすいためSをトラップすることができ、銅母材(マトリクス)を高純度化することができるためである。添加元素は1種類以上含まれていてもよい。また、合金の性質に悪影響を及ぼすことのないその他の元素および不純物を合金に含有させることもできる。
【0034】
また、以下に説明する好適な実施の形態においては、酸素含有量が2を超え30mass ppm以下が良好であることを説明しているが、添加元素の添加量およびSの含有量によっては、合金の性質を備える範囲において、2を超え400mass ppmを含むことができる。
【0035】
導電率が98%IACS以上の軟質銅材を得る場合、不可避的不純物を含む純銅(べ一ス素材)が、3〜12mass ppmの硫黄と、2mass ppmを超える量の酸素と、Tiを4〜55mass ppm含む軟質希薄銅合金材料でワイヤロッド(荒引き線)を製造することが好ましい。2mass ppmを超え30mass ppm以下の酸素を含有していることから、この実施の形態では、いわゆる低酸素銅(LOC)を対象としている。
【0036】
ここで、導電率が100%IACS以上の軟質銅材を得る場合には、不可避的不純物を含む純銅に2〜12mass ppmの硫黄と、2mass ppmを超える量の酸素とTiを4〜37mass ppm含む軟質希薄銅合金材料でワイヤロッドとすることが好ましい。
【0037】
さらに、導電率が102%IACS以上の軟質銅材を得る場合、不可避的不純物を含む純銅に3〜12mass ppmの硫黄と、2mass ppmを超える量の酸素と、Tiを4〜25mass ppm含む軟質希薄銅合金材料でワイヤロッドとすることが好ましい。
【0038】
通常、純銅の工業的製造において、電気銅を製造する際に、硫黄が銅中に取り込まれてしまうため、硫黄を3mass ppm以下とするのは難しい。半軟化温度を低減するために、汎用電気銅の硫黄濃度上限は12mass ppmとするのが好ましい。
【0039】
制御する酸素は、上述したように、少ないと軟化温度が下がり難いので2mass ppmを超える量とする。また酸素が多すぎると、熱間圧延工程で、表面傷が出やすくなるので30mass ppm以下とするのが好ましい。
【0040】
(2)分散している物質について
分散粒子のサイズは小さく沢山分布することが望ましい。その理由は、硫黄の析出サイトとして働くためサイズが小さく数が多いことが要求される。
【0041】
硫黄及びチタンは、TiO、TiO2、TiS、Ti−O−Sの形で化合物または、凝集物を形成し、残りのTiとSが固溶体の形で存在している。TiOのサイズが200nm以下、TiO2は1000nm以下、TiSは200nm以下、Ti−O−Sは300nm以下で結晶粒内に分布している軟質希薄銅合金材料とする。「結晶粒」とは、銅の結晶組織のことを意味する。
【0042】
但し、鋳造時の溶銅の保持時間や冷却状況により、形成される粒子サイズが変わるので鋳造条件の設定も必要である。
【0043】
(3)鋳造条件について
SCR連読鋳造圧延により、鋳塊ロッドの加工度が90%(30mm)〜99.8%(5mm)でワイヤロッドを造る、一例として、加工度99.3%でφ8mmワイヤロッドを造る方法を用いる。
【0044】
(a)溶解炉内での溶銅温度は、1100℃以上1320℃以下とする。溶銅の温度が高いとブローホールが多くなり、傷が発生するとともに粒子サイズが大きくなる傾向にあるので1320℃以下とする。1100℃以上としたのは、銅が固まりやすく製造が安定しないためであるが、鋳造温度は、出来るだけ低い温度が望ましい。
【0045】
(b)熱間圧延温度は、最初の圧延ロールでの温度が880℃以下、最終圧延ロールでの温度が550℃以上とする。
【0046】
通常の純銅製造条件と異なり、溶銅中での硫黄の晶出と熱間圧延中の硫黄の析出が本発明の課題であるので、その駆動力である固溶限をより小さくするためには、溶銅温度と熱間圧延温度を(a)、(b)とするのがよい。
【0047】
通常の熱間圧延温度は、最初の圧延ロールでの温度が950℃以下、最終圧延ロールでの温度が600℃以上であるが、固溶限をより小さくするためには、本発明では、最初の圧延ロールでの温度が880℃以下、最終圧延ロールでの温度が550℃以上に設定する
【0048】
(c)直径φ8mmサイズのワイヤロッドの導電率が98%IACS以上、100%IACS、更に102%IACS以上の軟質希薄銅合金線または板状材料を得ることができる。
【0049】
工業的に使うためには、電気銅から製造した工業的に利用される純度の軟質銅線にて98%IACS以上必要である。
【0050】
導電率は、無酸素銅のレベルで101.7%IACS程度であり、高純度銅(6N)で102.8%IACSであるため、出来るだけ高純度銅(6N)に近い導電率であることが望ましい。
【0051】
ベース材の銅はシャフト炉で溶解の後、還元状態の樋になるように制御した、すなわち還元ガス(CO)雰囲気下で、希薄合金の構成元素の硫黄濃度、Ti濃度、酸素濃度を制御して鋳造し、圧延するワイヤロッドを安定して製造する方法がよい。銅酸化物の混入や粒子サイズが大きいので品質を低下させる。
【0052】
ここで、添加元素としてTiを選択した理由は次の通りである。
【0053】
(a)Tiは溶融銅の中で硫黄と結合し化合物を造りやすいためである。
【0054】
(b)Zrなど他の添加元素に比べて加工でき扱いやすい。
【0055】
(c)Nbなどに比べて安価である。
【0056】
(d)酸化物を核として析出しやすいからである。
【0057】
以上により、本発明の軟質希薄銅合金材料は、溶融半田めっき材(線、板、箔)、エナメル線、軟質純銅、高導電率銅、焼鈍時のエネルギーを低減でき、やわらかい銅線として使用でき、生産性が高く、導電率、軟化温度、表面品質に優れた実用的な軟質希薄銅合金材料を得ることが可能となる。
また、本発明の軟質希薄銅合金線の表面にめっき層を形成してもよい。めっき層としては、例えば、錫、ニッケル、銀を主成分とするものを適用可能であり、いわゆるPbフリーめっきを用いてもよい。
また、本発明の軟質希薄銅合金線を複数本撚り合わせた軟質希薄銅合金撚線として使用することも可能である。
また、本発明の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたケーブルとして使用することもできる。
また、本発明の軟質希薄銅合金線を複数本撚り合わせて中心導体とし、中心導体の外周に絶縁体被覆を形成し、絶縁体被覆の外周に銅又は銅合金からなる外部導体を配置し、その外周にジャケット層を設けた同軸ケーブルとして使用することもできる。
また、この同軸ケーブルの複数本をシールド層内に配置し、前記シールド層の外周にシースを設けた複合ケーブルとして使用することもできる。
本発明の軟質希薄銅合金線の用途は、例えば、民生用太陽電池向け配線材、モーター用エナメル線用導体、200℃から700℃で使う高温用軟質銅材料、電源ケーブル用導体、信号線用導体、焼きなましが不要な溶融半田めっき材、FPC用の配線用導体、熱伝導に優れた銅材料、高純度銅代替え材料としての使用が挙げられ、これら幅広いニーズに応えるものである。また、形状は特に限定されず、断面丸形状の導体であっても、棒状のもの、平角導体であってもよい。
また、本発明の軟質希薄銅合金板の用途は、放熱板などに使用される銅板、リードフレームに使用される異形条銅材、配線基板に使用される銅箔など幅広い用途に適合しうるものである。
【0058】
また、上述の実施の形態では、SCR連続鋳造圧延法によりワイヤロッドを作製し、熱間圧延にて軟質材を作製する例で説明したが、本発明は、双ロール式連続鋳造圧延法またはプロペルチ式連続鋳造圧延法により製造するようにしても良い。
【実施例】
【0059】
表1は実験条件と結果に関するものである。
【0060】
【表1】

【0061】
先ず、実験材として、表1に示した酸素濃度、硫黄濃度、Ti濃度で、φ8mmの銅線(ワイヤロッド):加工度99.3%をそれぞれ作製した。φ8mmの銅線は、SCR連続鋳造圧延により、熱間圧延加工を施したものである。Tiは、シャフト炉で溶解された銅溶湯を還元ガス雰囲気で樋に流し、樋に流した銅溶湯を同じ還元ガス雰囲気の鋳造ポットに導き、この鋳造ポットにて、Tiを添加した後、これをノズルを通して鋳造輪と無端ベルトとの間に形成される鋳型にて鋳塊ロッドを作成した。この鋳塊ロッドを熱間圧延加工してφ8mmの銅線を作成したものである。その実験材を冷間伸線して、φ2.6mmのサイズにおける半軟化温度と導電率を測定し、またφ8mmの銅線における分散粒子サイズを評価した。
【0062】
酸素濃度は、酸素分析器(レコ(Leco;商標)酸素分析器)で測定した。硫黄、Tiの各濃度はICP発光分光分析器で分析した結果である。
【0063】
φ2.6mmのサイズにおける半軟化温度の測定は、400℃以下で各温度1時間の保持後、水中急冷し、引張試験を実施しその結果から求めた。室温での引張試験の結果と400℃で1時間のオイルバス熱処理した軟質銅線の引張試験の結果を用いて求めた。この2つの引張試験の引張強さを足して2で割った値を示す強度に対応する温度を半軟化温度と定義し求めた。
【0064】
表1において、実施材10は、実験室でAr雰囲気において直径φ8mmの銅線を試作した結果であり、銅溶湯にTiを、0〜18mass ppm添加したものである。
【0065】
工業的に要望がある導電率は98%IACS以上であり満足しており、総合評価は○であった。
【0066】
そこで、次にSCR連続鋳造圧延法にて、酸素濃度を7〜8mass ppmに調整してφ8mm銅線(ワイヤロッド)の試作を行った。
【0067】
実施材11は、SCR連続鋳造圧延法で試作した中でTi濃度の少ないもの(0,2mass ppm)であり、導電率は102%IACS以上であり、総合評価で、○となった。
【0068】
実施材1については、酸素濃度と硫黄が、ほぼ一定(7〜8mass ppm、5mass ppm)、Ti濃度の異なる(4〜55massppm)試作材の結果である。
【0069】
このTi濃度4〜55mass ppmの範囲では、導電率は98%IACS以上、102%IACS以上であり良好である。そしてワイヤロッドの表面もきれいであり、いずれも製品性能として満足している(総合評価○)。
【0070】
ここで、導電率100%IACS以上を満たすものは、Ti濃度が4〜37mass ppmのときであり、102%IACS以上を満たすものは、Ti濃度が4〜25mass ppmのときである。Ti濃度が13mass ppmのとき導電率が最大値である102.4%IACSを示し、この濃度の周辺では、導電率は、僅かに低い値であった。これは、Tiが13mass ppmのときに、銅中の硫黄分を化合物として捕捉することで、高純度銅(6N)に近い導電率を示したためである。
【0071】
よって、酸素濃度を高くし、Tiを添加することで、半軟化温度と導電率の双方を満足させることができる。
【0072】
比較材3は、Ti濃度を60mass ppmと高くした試作材である。この比較材3は、導電率は要望を満足していない。
【0073】
次に実施材2については、硫黄濃度を5mass ppmとし、Ti濃度を13〜10mass ppmとし、酸素濃度を変えて、酸素濃度の影響を検討した試作材である。
【0074】
酸素濃度に関しては、2mass ppmを超えて30mass ppm以下まで、大きく濃度が異なる試作材とした。但し、酸素が2mass ppm未満は、生産が難しく安定した製造できないため、総合評価は△とした。また酸素濃度を30mass ppmと高くしても半軟化温度と導電率の双方を満足することがわかった。
【0075】
また実施材12に示すように、酸素が40mass ppmの場合にも、導電率を満足していることがわかった。
【0076】
よって、酸素濃度が2mass ppmを超える量とすることで、導電率102%IACS以上の特性も満足させることができる。
【0077】
次に実施材3は、それぞれ酸素濃度とTi濃度とを比較的同じ近い濃度とし、Ti濃度を4〜20mass ppmと変えた試作材の例である。この実施材3においては、硫黄が2mass ppmより少ない試作材は、その原料面から実現できなかったが、Tiと硫黄の濃度を制御することで、導電率を満足させることができる。
【0078】
比較材5の硫黄濃度が18mass ppmで、Ti濃度が13mass ppmの場合には、必要特性を満足していた。
【0079】
以上より、硫黄濃度が2〜12mass ppmの場合には、導電率102%IACS以上の特性も満足することがわかった。
【0080】
また比較材6として高純度銅(6N)を用いた検討結果を示したが、導電率も102.8%IACSであった。
【0081】
【表2】

【0082】
表2は、製造条件としての、溶融銅の温度と圧延温度を示したものである。
【0083】
実施材4は、溶銅温度が1200〜1320℃で且つ圧延温度が低めの880〜550℃でφ8mmのワイヤロッドを試作した結果を示したものである。この実施材4については、導電率も良好で、総合評価は○であった。
【0084】
[軟質希薄銅合金線の軟質特性]
表3は、無酸素銅線を用いた比較材11と低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材5とを試料とし、異なる焼鈍温度で1時間の焼鈍を施したもののビッカース硬さ(Hv)を検証した表である。
実施材5は、表1の実施材1に記載した合金組成と同じものを使用した。なお、試料としては、2.6mm径の試料を用いた。この表によると、焼鈍温度が400℃のときに比較材11と実施材5とのビッカース硬さ(Hv)は同等レベルとなり、焼鈍温度が600℃でも同等のビッカース硬さ(Hv)を示している。このことから、本発明の軟質希薄銅合金線は十分な軟質特性を有するとともに、無酸素銅線と比較しても、特に焼鈍温度が400℃を超える領域においては優れた軟質特性を備えていることがわかる。
【0085】
【表3】

【0086】
[軟質希薄銅合金線の耐力及び屈曲寿命についての検討]
表4は、無酸素銅線を用いた比較材12と低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材6を試料とし、異なる焼鈍温度で1時間の焼鈍を施したものの0.2%耐力値の推移を検証した表である。なお、試料としては、2.6mm径の試料を用いた。
この表によると、焼鈍温度が400℃のときに比較材12と実施材6の0.2%耐力値が同等レベルであり、焼鈍温度600℃では実施材6も比較材12もほぼ同等の0.2%耐力値となっていることがわかる。
【0087】
【表4】

【0088】
つぎに、本発明に係る軟質希薄銅合金線は、屈曲寿命の高さが要求されるが、無酸素銅線を用いた比較材13と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材7における屈曲寿命を測定した結果を図8に表す。ここでは試料としては、0.26mm径の線材に対して焼鈍温度400℃で1時間の焼鈍を施したものを用い、比較材13は比較材11と同様の成分組成であり、実施材7も実施材5と同様の成分組成のものを使用した。
ここに、屈曲寿命の測定方法は、屈曲疲労試験により行った。屈曲疲労試験は、荷重を負荷し、試料表面に引張と圧縮の繰返し曲げひずみを与える試験である。屈曲疲労試験は、図7に示す。試料は、(A)のように曲げ治具(図中リングと記載)の間にセットし荷重を負荷したまま、(B)のように治具が90度回転し曲げを与える。この操作で、曲げ治具に接している線材表面には、圧縮ひずみが、これに対応して反対側の表面には、引張ひずみが負荷される。その後、再び(A)の状態に戻る。次に(B)に示した向きと反対方向に90度回転し曲げを与える。この場合も、曲げ治具に接している線材表面には、圧縮ひずみが、これに対応して反対側の表面には、引張ひずみが負荷され(C)の状態になる。そして(C)から最初の状態(A)に戻る。この屈曲疲労1サイクル(A)(B)(A)(C)(A)に要する時間は4秒である。表面曲げ歪は以下の式により求めることができる。
表面曲げ歪(%)=r/(R+r)×100(%)、R:素線曲げ半径(30mm)、r=素線半径
図8の実験データによると、本発明に係る実施材7は比較材13に比して高い屈曲寿命を示した。
また、無酸素銅線を用いた比較材14と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材8における屈曲寿命を測定した結果を図9に表す。ここでは試料としては、0.26mm径の線材に対して焼鈍温度600℃で1時間の焼鈍を施したものを用い、比較材14は比較材11と同様の成分組成であり、実施材8も実施材5と同様の成分組成のものを使用した。屈曲寿命の測定方法は、図8の測定方法と同様の条件により行った。この場合も、本発明に係る実施材8は比較材14に比して高い屈曲寿命を示した。
【0089】
[軟質希薄銅合金線の結晶構造についての検討]
また、図10は、実施材8の試料の幅方向の断面組織の写真を表したものであり、図11は、比較材14の幅方向の断面組織の写真を表したものである。図11は、比較材14の結晶構造を示し、図10は実施材8の結晶構造を示す。これをみると、比較材14の結晶構造は、表面部から中央部にかけて全体的に大きさの等しい結晶粒が均一に並んでいることがわかる。これに対し、実施材8の結晶構造は、全体的に結晶粒の大きさがまばらであり、特筆すべきは、試料の断面方向の表面付近に薄く形成されている層における結晶粒サイズが内部の結晶粒サイズに比べて極めて小さくなっていることである。
発明者らは、比較材14には形成されていない、表層に現れた微細結晶粒層が実施材8の屈曲特性の向上に寄与しているものと考えている。
このことは、通常であれば、焼鈍温度600℃で1時間の焼鈍処理を行えば、比較材14のように再結晶により均一に粗大化した結晶粒が形成されるものであると理解されるが、本発明の場合には、焼鈍温度600℃で1時間の焼鈍処理を行ってもなお、その表層には微細結晶粒層が残存していることから、軟質銅材でありながら、屈曲特性の良好な軟質希薄銅合金材料が得られたものであると考えられる。
そして、図10および図11に示す結晶構造の断面写真をもとに、実施材8および比較材14の試料の表層における平均結晶粒サイズを測定した。ここに、表層における平均結晶粒サイズの測定方法は、図12に示すように、0.26mm径の幅方向断面の表面から深さ方向に10μm間隔で50μmの深さまでのところの長さ1mmの線上の範囲での結晶粒サイズを測定した夫々の実測値を平均した値を表層における平均結晶粒サイズとした。
測定の結果、比較材14の表層における平均結晶粒サイズは、50μmであったのに対し、実施材8の表層における平均結晶粒サイズは、10μmである点で大きく異なっていた。表層の平均結晶粒サイズが細かいことによって、屈曲疲労試験による亀裂の進展が抑制され、屈曲疲労寿命が延びたと考えられる(結晶粒サイズが大きいと結晶粒界に沿って亀裂が進展してしまうが、結晶粒サイズが小さいと亀裂の進展の方向が変わるため、進展が抑制される)。このことが、上述のとおり、比較材と実施材との屈曲特性の面で大きな相違を生じたものと考えられる。
また、2.6mm径である実施材6、比較材12の表層における平均結晶粒サイズは、2.6mm径の幅方向断面の表面から深さ方向に50μmの深さのところの長さ10mmの範囲での結晶粒サイズを測定した。
測定の結果、比較材12の表層における平均結晶粒サイズは、100μmであったのに対し、実施材6の表層における平均結晶粒サイズは、20μmであった。
本発明の効果を奏するものとして、表層の平均結晶粒サイズの上限値としては、20μm以下のものが好ましく、製造上の限界値から5μm以上のものが想定される。
【0090】
[軟質希薄銅合金材料の結晶構造についての検討]
図13は、実施材9の試料の幅方向の断面組織の写真を表したものであり、図14は、比較材15の幅方向の断面組織の写真を表したものである。図13は実施材9の結晶構造を示し、図14は、比較材15の結晶構造を示す。
【0091】
実施材9は、表1に示す実施材1の上から3番目の最も軟質材の導電率が高い0.26mm径の線材である。この実施材9は、焼鈍温度400℃で1時間の焼鈍処理を経て作製される。
【0092】
比較材15は、無酸素銅(OFC)からなる0.26mm径の線材である。この比較材15は、焼鈍温度400℃で1時間の焼鈍処理を経て作製される。実施材9および比較材15の導電率を表5に示す。
【0093】
【表5】

【0094】
図13および図14に示すように、比較材15の結晶構造は、表面部から中央部にかけて全体的に大きさの等しい結晶粒が均一に並んでいることがわかる。これに対し、実施材9の結晶構造は、表層と内部とで結晶粒の大きさに差があり、表層における結晶粒サイズに比べて内部の結晶粒サイズが極めて大きくなっている。
【0095】
実施材9は、例えば、φ2.6mm、φ0.26mmとなるように加工した導体の銅中のSをTi−S、Ti−O−Sの形で捕捉している。また、銅中に含まれる酸素(O)は、例えば、TiO2のように、TixOyの形で存在しており、結晶粒内、結晶粒界に析出している。
【0096】
このため、銅を焼鈍して結晶組織を再結晶させたときには、実施材9は、再結晶化が進み易く内部の結晶粒が大きく成長する。このため、実施材9は、比較材15と比べて、電流を流したときに、電子の流れが妨げられることが少なく進むこととなり、電気抵抗が小さくなる。従って、実施材9は、比較材15と比べて導電率(%IACS)が大きくなる。
【0097】
以上の結果により、実施材9を用いた製品では、軟らかく、導電率が向上し、且つ屈曲特性を向上させることができる。従来の導体では、結晶組織を実施材9のような大きさに再結晶させるためには、高温の焼鈍処理が必要となる。しかし、焼鈍温度が高過ぎると、Sが再固溶してしまう。また、従来の導体では、再結晶させると、軟らかくなり、屈曲特性は低下する問題があった。上記に記載の実施材9では、焼鈍したときに双晶とならずに再結晶できるため、内部の結晶粒が大きくなり、軟らかくなるが、一方で表層は、微細結晶が残っているため、屈曲特性が低下しない特徴がある。
【0098】
[軟質希薄銅合金線の伸び特性と結晶構造との関係について]
図15は、2.6mm径の無酸素銅線を用いた比較材15と2.6mm径の低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材9を試料とし、異なる焼鈍温度で1時間の焼鈍を施したものの伸び(%)の値の推移を検証したグラフである。図15に示す丸記号は、実施材9を示し、四角記号は、比較材15を示す。
この表によると、比較材15に比して実施材9の方が、焼鈍温度100℃を超え130℃付近から900℃の広い範囲で優れた伸び特性を示すことがわかる。
また、焼鈍温度500℃における実施材9の銅線の断面写真を示したのが図16である。この図16をみると、銅線の断面全体において微細な結晶組織が形成されており、この微細な結晶組織が伸び特性に寄与しているものと思われる。これに対し、焼鈍温度500℃における比較材15の断面組織は2次再結晶が進んでおり、図16の結晶組織に比して、断面組織中の結晶粒が粗大化しているため、伸び特性が低下したものと考えられる。
また、焼鈍温度700℃における実施材9の銅線の断面写真を示したのが図17である。銅線の断面における表層の結晶粒サイズが、内部における結晶粒サイズに比べて極めて小さくなっていることがわかる。内部における結晶組織は2次再結晶が進んでいるものの、外層における微細な結晶粒の層は残存している。実施材9は、内部の結晶組織が大きく成長するが、表層に微細結晶の層が残っているため、伸び特性を維持しているものと思われる。
これに対して図18に示す同じく焼鈍温度700℃における比較材15の断面組織は、表面から中央にかけて全体的に略等しい大きさの結晶粒が均一に並んでおり、断面組織全体において2次再結晶が進行しているため、実施材9に比して比較材15の600℃以上の高温領域における伸び特性は、低下しているものと考えられる。
このように、実施材9では、比較材15よりも伸び特性の点で優れているため、この導体を用いて撚線を製造するときの取り扱い性に優れ、耐屈曲特性に優れ、曲げやすさの点においてもケーブルの配策が容易になるという利点がある。
【0099】
以上、本発明の実施の形態及びその変形例を説明したが、上記に記載した実施の形態及び変形例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び変形例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。

【特許請求の範囲】
【請求項1】
4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金線において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金線。
【請求項2】
請求項1に記載の軟質希薄銅合金線であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金線。
【請求項3】
前記軟質希薄銅合金線の表面にめっき層を形成したことを特徴とする請求項1又は請求項2に記載の軟質希薄銅合金線。
【請求項4】
請求項1乃至請求項3のいずれか1項に記載の軟質希薄銅合金線を複数本撚り合わせたことを特徴とする軟質希薄銅合金撚線。
【請求項5】
請求項1乃至請求項4のいずれか1項に記載の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたことを特徴とするケーブル。
【請求項6】
4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金板において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金板。
【請求項7】
請求項6記載の軟質希薄銅合金板であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金板。
【請求項8】
4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金材料において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金材料。
【請求項9】
請求項8記載の軟質希薄銅合金材料であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金材料。

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図12】
image rotate

【図15】
image rotate

【図18】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図10】
image rotate

【図11】
image rotate

【図13】
image rotate

【図14】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−117152(P2012−117152A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2012−10159(P2012−10159)
【出願日】平成24年1月20日(2012.1.20)
【分割の表示】特願2010−235269(P2010−235269)の分割
【原出願日】平成22年10月20日(2010.10.20)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】