説明

量子光伝送装置およびそのための量子光発生装置

【課題】光ファイバのカー効果を用いたスクィズド光生成法は比較的容易な方法であるが、ビームを正確に50:50の分割すること等製作上の制約が大きい。さらに、任意の波長帯、パルス幅でスクィズド光を発生できることが通信応用の観点から望まれる。
【解決手段】任意の光ファイバと2つの直線偏光成分を時間的に分離する手段と2つのファラデー回転器と高反射ミラーでスクィズド光生成器を構成する。2つの直交偏光成分に50:50の強度比で時間的に分離したパルス光を、光ファイバに往復伝播させ、復路では偏波を90°回転させる。2つの偏光成分は往復で正確に等しい光路を経るので、ファイバ往復後は50:50で正確に干渉する。干渉したビームは消光比の高い偏光ビームスプリッタで分離される。ファイバ入射前と往復後の偏波が一致していればファイバ伝播中の偏波は確定している必要は無く、任意のファイバを用いることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は量子力学的手法を用いた光通信および暗号通信に関する。
【背景技術】
【0002】
高度情報化社会の進展に伴い安全な情報伝達手段が益々重要になっている。情報の安全性を確保するために現在は公開鍵暗号等の暗号技術が広く利用されている。公開鍵暗号はその暗号解読に天文学的な計算量を必要とし、それが情報の安全性を裏づけている。しかしながら将来、計算機が発達すれば、現時点で不可能な暗号解読が可能になるかもしれない。
【0003】
この問題に対処するひとつの方法は量子力学的原理に基づいた通信手法を用いることである。量子力学的手法を用いた光通信方法には様々なものが考えられるが、媒体である光の状態と検出方法の2つの視点に分類して考えることができる。量子力学的状態を生成するための基本的な光の状態としては2つの状態が知られており、光子をひとつずつ数えることができるほどに強度が小さくなった状態と、量子力学の不確定性関係を操作したスクィズド状態である。スクィズド状態は光強度に関係なく不確定性関係を操作した状態であり、扱い易い光強度にして応用に資することが可能であるが、スクィズド状態生成装置は一般に大型で高い安定性が要求されるのが普通である。スクィズド状態生成に関しては、特許文献1、特許文献2、非特許文献4および非特許文献5等の開示がある。
検出方法から分類すると参照光を必要とするものとしないものに分けられる。参照光を必要とする方式においては、信号光と参照光の波長が等しく、位相が同期している必要がある。そのような参照光を得る方法は、コヒーレント光通信方式の開発段階で色々と提案・開発されてきた(非特許文献1)。
【0004】
これらの基本的構成は、検出部に参照光のための局発光源を設置し、高度な技術の電気回路を用いて信号光と局発光の周波数と位相をある範囲内に合わせ込もうとするものであるが、極めて困難な方法である。困難さを少しでも緩和するものとして、参照光を生成する際に信号光の一部を利用する方法もある(非特許文献2)。しかし、量子情報は信号光の一部を参照光の生成のために利用すると、利用した量に応じて信号を壊してしまうため、信号光の一部を参照光の生成のために利用する方法は量子情報の場合には基本的に適用できない。
【0005】
一般に、実験室で行なう量子通信の実験では、参照光として信号光を生成した光源の出力光の一部を利用している。このようにすれば信号光と参照光は完全に同期が取れており参照光としての条件を満たしている。しかしながら、信号光と参照光を別々の光路で送る方法を、実験室外の長距離伝送で用いた場合には、各光路の外部環境の違いに起因する揺動のために位相の同期が保障されない。この問題が、参照光を必要とする量子通信システムを実験室外で行われるフィールド試験さらには実用化の段階に発展させられない理由のひとつになっている。
【0006】
この問題に対しては、信号光と参照光を同一の光源を種光として生成し、同一伝送路で時間的にずらして伝送させることで解決しようとする方法が提案されている(非特許文献3)。これにより伝送中の外部環境因子が等しくなり、長距離伝送後の信号光と参照光の位相の同期性が改善される。
【0007】
しかしながら、本方法でも信号光と参照光の同期性は完全ではない。光ファイバの非線形性は一般に小さいが、長距離伝送の際は積分効果により正味の効果としては大きなものになる。信号光と参照光では光強度が異なり、また参照光同士においても強度揺らぎがあるために伝送後の位相特性は非線形効果を通して異なるものになる。
【0008】
さらに、この位相同期の問題に加えて、量子通信には一般に損失に関する問題がある。上述したように量子信号は一部取り出すとその量に応じてその分だけ量子状態が壊れてしまう。これが、量子通信が安全であることの裏づけであるが、故意に一部取り出しを行なわなくても伝送損失によっても信号の一部破壊になる。したがって、量子信号を長距離伝送するためにはブレークスルーとなる技術が必要である。
【0009】
【特許文献1】特開平5−34739号公報
【特許文献2】特開2002−214654号公報
【非特許文献1】島田禎晉監修:コヒーレント光通信、p.4950、コロナ社、1988年
【非特許文献2】島田禎晉監修:コヒーレント光通信、p.2526、コロナ社、1988年
【非特許文献3】T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki: Quantum cryptography using pulsed homodyne detection, Physical Review A 68, 042331 (2003).
【非特許文献4】M. Shirasaki and H. A. Haus, J. Opt. Soc. Am. B 7, 30 34 (1990).
【非特許文献5】N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, Jpn. J. Appl. Phys. 41, L130 L132 (2002).
【発明の開示】
【発明が解決しようとする課題】
【0010】
量子力学的手法を用いて光学的に情報処理や情報伝送を行なうためには簡便な量子光源を提供することは必要不可欠である。応用範囲が広く、典型的な量子光である直交位相スクィズド状態は通常パラメトリック下方変換を用いて生成される。しかしながら、この方法は装置が大型で高度な安定性が要求され、簡便な量子光源とは言い難い。
【0011】
比較的簡便な方法として提案されたのが光ファイバのカー効果を利用した方法である(M. Shirasaki and H. A. Haus, J. Opt. Soc. Am. B 7, 30 − 34 (1990))。この方法は50:50のビームスプリッタ(あるいはファイバカプラ)と偏波保存光ファイバにより所謂Sagnac ループを構成し、励起ビームの2分割、ファイバ伝播、ビームの再合成をして、励起光を入力しなかったポートから直交位相スクィズド状態を生成させるものである。しかしながら、正確に50:50は困難であること、2つのビームを干渉させる際に波面の乱れの影響が出ること、さらにそれらの影響で直交位相スクィズド状態が生成されるポートから元もとの励起光の一部が同時に出力される問題点があった。
【0012】
これらの問題を解決する方法として提案されたのが長さの等しい2本の偏波保存ファイバをお互いの光学軸が直交するように融着させ、励起ビームを一方向に伝播させるものである(N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, Jpn. J. Appl. Phys. 41, L130 − L132 (2002))。この方法はビームを2分割することなく、ひとつのビームを偏波保存ファイバに入力し、2つの光学軸方向を偏光方向とする2つの成分に分解させ、それぞれを伝播させた後、再合成されるので、再合成される2つのビームは完全に同一の導波路を伝播し、波面に乱れがあっても二つの成分間でその乱れは等しく、二つのビームは再合成される。しかしながら、この方法は、2本の偏波保存ファイバの長さを正確に一致させねばならず、さらにお互いの光学軸が直交した状態で融着させねばならず技術的困難さが伴っていた。
【0013】
時間的に前後するが、この問題に対応できる方法として、偏波保存ファイバを2本用いるのではなく1本のみを用いて往復伝送させる方法が提案されていた(QELS '93 Technical Digest, Friday Morning 281, QFF3)。ファイバとミラーの間にはλ/4板を配置し、往路と復路で2つの偏光方向を交換させ、往復で偏波保存ファイバの2つの光学軸に対応した偏波面を一度づつ伝播させる。2本の偏波保存ファイバの長さを正確に一致させる必要も、それらを融着する必要も無く、2本の偏波保存ファイバを伝播させたことと等価なことを1本で達成できる。
【0014】
ここまでに示した方法はいずれも偏波保存光ファイバを用いている。しかしながら、偏波保存光ファイバは用途の限られた特殊なものであるために必要とする仕様のものがいつでも用意できるわけではない。様々な仕様のものが用意されている偏波が保存されない通常の単一モード光ファイバを用いることができれば、現在のところスクィズド状態を効率的に生成することが不可能な波長帯においても量子通信の実用化の可能性が出てくる。したがって、本発明ではスクィズド状態を用いた伝送装置及び、そのスクィズド状態を生成するための偏波非保存な光ファイバを用いた方法を提供する。
【課題を解決するための手段】
【0015】
送受信機間の信号伝送において信号光と参照光を同一ファイバで伝送するだけでなく、両者を直交する偏波で時間的に重なるようにして伝送する。信号光にはスクィズド光を利用する。
【0016】
スクィズド光生成は以下のように行われる。まず、励起光をパルス状の直線偏光で、45°回転の第1のファラデー回転器を透過させる。45°回転した直線偏光を直交する2つの直線偏光に50:50で分解する。それぞれの偏光に遅延を与えて各偏光のパルスが時間的に重ならないようにしてから偏波を保存する必要のない任意の単一モード光ファイバに入力し伝播させる。光ファイバの出口には45°回転の第2のファラデー回転器と反射ミラーを配置する。第2のファラデー回転器は往復で合計2回通過するので偏光は合計で90°回転することになり、光ファイバを伝播する2つの偏光は往路と復路で偏光方向がちょうど入れ替わる。すなわち、偏波非保存な光ファイバ1本のみを用いて往復伝送する。光ファイバを逆行してきた励起光は、再び、遅延器と偏光が45°回転の第1のファラデー回転器を透過して最初の位置に戻る。第1と第2のファラデー回転器をそれぞれ2回ずつ通過することになるので、偏光の回転角は合計で180°となり、励起光の偏光状態は最初の直線偏光状態に戻る。スクィズド光はそれに直交する偏光状態として現れるので偏光分離器を用いて取り出すことができる。
【発明の効果】
【0017】
偏波非保存な光ファイバを用いてもスクィズド状態生成が可能になり、偏波保存ファイバの特性で制限されていたスクィズド光の波長帯・パルス幅等の特性の自由度が向上する。特に1.5μmの通信波長帯では各種特性の光ファイバが用意されており、通信への応用の観点から得られるものが大きい。さらに容易に発生可能になったスクィズド光を参照光とセットにして送ることにより量子光の一形態であるスクィズド光を用いた通信が実現可能になる。
【発明を実施するための最良の形態】
【0018】
(実施例1)
図1は本発明の基本形態のひとつを示すシステム構成図である。光送信機100から出力された信号光391及び参照光392は同一の光ファイバ300を直交する偏光で時間的に重なって光受信機200に伝送される。信号光391と参照光392は、同一の光源を種光として生成され、直交する偏光で時間的に重なって送信されるため、光受信機200で検出する時に位相が同期している。
【0019】
パルス光を光ファイバで長距離伝播させるとファイバ分散のために一般にパルスが広がるが、ソリトンとして伝播させると例外的にパルス幅を維持して伝播できる。量子通信では一般に信号光391は微弱光で、参照光392は比較的強度が強い。参照光392をソリトン状態にし、直交する偏波である信号光391をトラップさせて伝播させれば、微弱な信号光もパルス幅を維持して伝播が可能である。また、以下で述べるように光ファイバの非線形効果はスクィズド光生成に利用されるように本来的に量子状態生成の機能を持っている。ファイバ伝送では一般に損失のために量子状態の性質が壊れていくが、ソリトンである参照光391にトラップされた信号光392は量子状態が壊れていくと同時に生成されていく性質もある。したがって、送信時における量子状態をまったく保存する訳ではないが、量子力学的性質を持った信号光が受信機まで到達可能になる。
【0020】
図2は同一の光源を種光として直交する偏光で時間的に重なった信号光391及び参照光392を生成するための送信機の構成の一例を示すブロック図である。110は光源、191はその出力光である。量子状態発生器120は光源110の出力光191を基にして量子光193を生成する。量子光193の量子状態としてスクィズド状態を考えた場合、その生成法はパラメトリック下方変換を用いた方法(R. E. Slusher, et al., "Observation of squeezed states generated by four-wave mixing in an optical cavity," Phys. Rev. Lett. 55, 2409 2412 (1985) ;E. S. Polzik, J. Carry, and H. J. Kimble, Appl. Phys. B 55, 279 (1992))、光ファイバとビームスプリッタを用いた方法(M. Shirasaki and H. A. Haus, "Squeezing of pulses in a nonlinear interferometer," J. Opt. Soc. Am. B 7, 30 34 (1990))、以下の実施例で示す本願発明の方法等が考えられる。
【0021】
エネルギー的には量子光193は光源110の出力光191の一部を用いて生成される。量子状態生成に使用されなかった成分192は参照光として利用される。参照光192は必要に応じて増幅器142で増幅される。生成された量子光193は変調器141で送信信号を重畳されて量子信号光194となる。この際、光受信装置200で参照光との同期関係をチェックするための信号を量子信号194にある間隔ごとに乗せておけば便利である。同期関係をチェックするための信号は、変調器141における変調度をあらかじめ既定した値にすれば達成できる。
【0022】
信号光194は参照光192と直交する偏光で合波器161により合波され、光ファイバ300で伝送される。合波器161は偏光ビームスプリッタを用いるのが簡単である。偏光ビームスプリッタは直交する直線偏光を合波するものであり、合波器161への2つの入力光である参照光192及び信号光194は偏波調整器151及び152により適当な偏光に調整される。通常、参照光192と量子光193は直線偏光なので、偏波調整器151と152は半波長板でその目的を達成できる。145は光遅延器であり、矢印に示すように位置が可変とされ、合波器161に導入される参照光192のタイミングの調整に使用される。
【0023】
なお、図では、単に光路を変更するだけの機能のミラーについては参照符号と説明を省略する。以下の図においても同様である。
【0024】
光ファイバ300は偏波保存ファイバを用いる方式と用いない方式のどちらも可能である。偏波保存ファイバを用いる方式では、ある長さごとにファースト軸とスロー軸を入れ替えて、伝送に要する時間を二つの偏光方向に対してほぼ等しくするオプションもありうる。
【0025】
光ファイバ300に偏波保存ファイバを用いて、参照光192及び信号光194の偏波が特定されている場合は受信機200の構成は比較的単純になる。図3は参照光192及び信号光194の偏波が特定されている場合の受信機の構成の一例を示すブロック図である。まず分波器220により信号光291と参照光292に分離する。分波器220は偏光ビームスプリッタを用いるのが簡単である。分離された参照光292は必要に応じて増幅器231と波形整形器232を通して増幅波形整形され、光遅延器145により光路長が調整されて分岐比50:50のビームスプリッタ241に導かれ、信号光291と干渉する。
【0026】
信号光291と参照光292が干渉するためには、両者の偏光が一致して且つ光路長も位相レベルで一致している必要がある。偏波調整器221と222は前者の目的のためのもので、信号光191と参照光292が通常直線偏光であることを考えれば半波長板でその目的を達成できる。光遅延器145は後者の目的である光路長調整のためのものである。ビームスプリッタ241に対しては色々な方法があり、通常のビームスプリッタやファイバカプラの他、偏光ビームスプリッタを用いる方法もある。
【0027】
ビームスプリッタを透過して干渉した2つの光は光検出器242,243でそれぞれ検出される。光検出器242,243はフォトダイオードや光電子増倍管等である。光検出器242と243での検出信号は電気回路244で処理されて出力信号となる。出力信号の一部は位相解析器250に導かれて、信号光291と参照光292の位相差を解析し、その位相差を最適化するように光遅延器145にフィードバックされる。
【0028】
光ファイバ300に偏波を保存しない通常の光ファイバを用いた場合や偏波保存ファイバを用いた場合でも偏光を調整したい場合、受信機200は、偏波調整器211を分波器220への入力前に設置する。図4、図5及び図6は、それぞれ、偏波調整器211を分波器220への入力前に設置する場合の受信機の構成の例を示すブロック図である。分波器220に偏光ビームスプリッタを用いた場合は偏波調整器211により直線偏光になるように調整する。受信機200に伝送されてきた光の偏波面は偏光解析器212により解析される。
【0029】
偏光解析器212の位置は様々な位置が考えられ、分波器220の手前で伝送されてきた光の一部をビームスプリッタ249で分波して取り出す場合(図4)、分波器220の後方で参照光の一部をビームスプリッタ249で分波して取り出す場合(図5)、分波器220の後方で信号光の一部をビームスプリッタ249で分波して取り出す場合(図6)が考えられる。いずれの場合も解析結果は偏波調整器211にフィードバックされる。偏波調整器211周辺を除けば、図4、図5及び図6に示す受信機200の構成は、図3に示す受信機200の構成と同じである。
【0030】
受信機において参照光を増幅・波形整形する必要がない場合は受信機200を簡単な構成にすることができる。図7は参照光を増幅・波形整形する必要がない場合の受信機の構成の例を示すブロック図である。偏波調整器215を調整して、偏光ビームスプリッタ245の透過光に対する光軸と参照光の偏波面が45度の角度をなす直線偏光なるようにして、参照光を245で2分割する。その際同時に信号光も2分割されて、それぞれの分割ビームは参照光と信号光の間で干渉する。干渉したそれぞれのビームは光検出器242及び243で光電変換され、電気回路246で処理される。光検出器242及び243での相対的検出強度は偏光ビームスプリッタ245への入力偏光に依存するため、光検出器242と243への入力強度が等しくなるように、強度解析器216を通して偏波調整器215にフィードバックされる。
【0031】
(実施例2)
次に、本発明を特徴付ける量子状態発生器120の実施例について具体的に説明する。
【0032】
図8は本発明を特徴付ける量子状態発生器120の構成例1を示すブロック図である。励起光1が偏光ビームスプリッタ11に入力する。パルス状の励起光1の偏光方向は偏光ビームスプリッタ11を透過する方向(p偏光)にあらかじめ調整する。透過した励起光1はファラデー回転器26を透過して偏光方向が45°回転し、λ/2波長板21で偏光方向が調整された後、コリメータレンズ61で集光されて短尺の偏波保存光ファイバ36に入力される。ファイバ36への入力光はファイバ36の二つの光学軸方向の成分の強度が等しくなるようにλ/2波長板21により調整される。ファイバ36の入力端の光学軸方向を調整できるようにしている場合はλ/2波長板21を省略することもできる。
【0033】
偏波保存光ファイバ36を設置している目的は2つの光学軸方向に入力したパルス励起光の時間的重なりを無くしておのおののパルスが独立なパルスとみなせるようにすることである。したがって、必要となる長さはファイバ36の複屈折の大きさやパルス幅によって異なる。例えば、ビート長3.0mmの偏波保存ファイバでパルス幅100fs程度の励起光を時間的に分離するためには10cm程度の偏波保存ファイバ36が必要である。偏波保存ファイバ36の役目は2つの偏光成分を時間的に分離させることなので分散や非線形効果は出来るだけ少ないことが好ましい。1.5μm帯で低分散を優先させる場合は分散シフト型の偏波保存ファイバを用いればよい。ファイバ36を透過した励起光1は引き続きスクィズド光生成のためのファイバ37に導かれる。ファイバ37は偏波保存である必要は無く必要に応じて任意のファイバが使用できる。ファイバ36と37の接続は損失を最低限に抑えるため融着することが望ましいが、ファイバ交換の利便性を考慮してコネクタで接続することも可能である。接続面を無反射コートにすれば反射損失を低減できる。図8のファイバ36と37のつき合わされている部分に短く太い線が表示してあるのは、これらの接続を意味する。
【0034】
ファイバ37を透過した励起光はコリメータレンズ62で平行光にされて45°(あるいは−45°)回転のファラデー回転器27を透過して、ミラー51に到達する。ミラー51を反射した励起光1は同じ導波路を逆行する。ファラデー回転器27は往復で2回通過するので合計で90°(あるいは−90°)の回転になる。したがって、光ファイバ37及び36では往路と復路で直交した偏光状態で伝播することになる。偏波保存でない光ファイバ37では一般に偏波が楕円偏光になっているが、まったく同じ導波路を往路と復路で直交した状態で伝播するので偏波保存ファイバ36に戻って来たときには直線偏光に戻る。偏波保存ファイバ36は、往路においては2つの偏光成分に遅延を付けたが、復路では2つの偏光が入れ替わっているので、遅延分が相殺され再度1つの偏光に戻ってファラデー回転器26を透過して偏光が45°回転する。励起光1は2つのファラデー回転器を往復で2回ずつ透過するので偏光の回転は合計で180°(あるいは0°)になる。即ち、励起光の偏光方向は入力したときと同じである。したがって、励起光1は光2となって偏光ビームスプリッタ11を透過し、参照光192として利用される。以下で述べるように偏光ビームスプリッタ11のポート2からはスクィズド光3(量子光193)が出力される。
【0035】
偏光ビームスプリッタ11は、2つの三角プリズムにコーティングして張り合わせた通常の立方体偏光ビームスプリッタを始めとして様々な種類のものが適用可能である。例えば、ガラス基板にコーティングした平面型偏光ビームスプリッタ、ウォーラストンプリズム、ロションプリズム、グランレーザープリズム、グラントムソンプリズム、等がある。立方体偏光ビームスプリッタは安価で反射角も90°で扱い易いが、反射光の純度が一般に悪く、本来の偏光成分であるS偏光に僅かにP偏光を含む。偏光成分の純度を上げたい場合には偏光ビームスプリッタ11で偏光を分離した後、別の偏光ビームスプリッタを透過させれば不要な成分が除去される。本実施例に限らず、偏光の純度を上げたい場合にはすべてこの方法を利用できる。
【0036】
図9は本発明を特徴付ける量子状態発生器120の構成例2を示すブロック図である。図8と対比して明らかなように、偏波保存光ファイバ36からの出力光をコリメータレンズ63により一旦自由空間(空気中)に取り出した後、もう1つのコリメータレンズ64を用いてファイバ37に入力させた点を除けば、構成例1と同じである。
【0037】
以上は量子効果を考慮せずにファイバ36と37を伝播する光の様子を述べた。量子効果は励起光1が偏光ビームスプリッタ11のポート1から入力する際にポート2から入力する真空ノイズ(S偏光)によりもたらされる。真空ノイズは量子力学特有の概念である。真空ノイズは、励起光1が偏波保存ファイバ36で二つの偏光成分に分割されたのと同様に2分割される。2分割された真空ノイズは2分割された励起光1と共にファイバ37を伝播するので、励起光1が被るカー効果を真空ノイズも受ける。真空ノイズを図形的に表現すると量子揺らぎを表す不確定性円になる。光ファイバ37を往復した真空ノイズはカー効果のために楕円化されて偏光ビームスプリッタ11のポート2から出力される。この楕円化した量子揺らぎを持った光が直交位相スクィズド状態と呼ばれる量子光である。
【0038】
光ファイバ37中で効果的にカー効果を起こすためにはピーク強度が大きく、ファイバ伝播中もパルス波形が崩れない励起光が望ましい。カー効果が働いた状態で光ファイバを安定して伝播できる状態として光ソリトンが知られている。安定なソリトンが存在するための条件は理論的に知られており、式(1)の場合である。
【0039】
【数1】

【0040】
ここで、γはカー効果の強さを表す係数、Pは励起光のピーク強度、Tはパルス幅、β2は群速度分散である。この式から分かることは群速度分散が大きいファイバでは大きいピーク強度が必要になる。可能なピーク強度にも限界があるので、その限界に応じて群速度分散が選べると好都合である。通常、偏波保存ファイバの分散値は限られたものしか製造されていないため、必要な波長帯でソリトンを生成できない場合も出てくるが、偏波保存でない一般の光ファイバならば各種の分散値のファイバが存在するため、本発明により様々なパラメタの条件化でソリトン生成が可能になり、効果的にスクィズド光を生成できる。
【0041】
励起光1のための光源としては、固体レーザー、ファイバーレーザー、半導体レーザー等がある。スクィズド状態はカー効果を利用して生成されるので、それを効率的に生成するためには励起光をパルスにしてピークパワーを大きくするのが効率的である。固体レーザーやファイバーレーザーはフェムト秒パルスの生成が可能で高いピークパワーを得るのに特に有効である。光ファイバ通信に有利な波長1.5μm帯に対してはCr:YAG固体レーザーやEr添加ファイバーレーザーがある。
【0042】
図10は本発明を特徴付ける量子状態発生器120の構成例3を示すブロック図である。構成例1と2では、2つの偏光成分に遅延を付けるのに、偏波保存ファイバ内の2つの偏光成分に群速度の違いがあることを利用した。図8と図10を対比して明らかなように、入力励起光1がλ/2波長板21を透過するまでは図8に示す構成例1と同様である。λ/2波長板21を透過した2つの偏光成分は、次に、偏光ビームスプリッタ16に入力して2つの偏光成分に等しく分離され、それぞれ光路6と7に進む。分離された偏光は偏光ビームスプリッタ17で再度合波されてコリメータレンズ61、光ファイバ37へと進む。光路6と7に僅かに光路長の差を与えて光ファイバ37内で2つの偏光成分のパルス光が時間的に重ならないようにする。光ファイバ37内で真空ノイズがカー効果を受けるのは構成例1とまったく同様で、また、復路では2つの偏光が交換して、最終的にスクィズド光3がポート2より放出される。
【0043】
(実施例3)
図11は、実施例2で説明した量子状態発生器120により生成したスクィズド光を信号波にして光通信をする場合の送信機100の例を示す図である。ここでは、図8で説明した量子状態発生器120によるものとした。励起光源110から出力した励起光はアイソレータ213とλ/2波長板221を透過してP偏光で偏光ビームスプリッタ231に入力される。偏光ビームスプリッタ231を透過した励起光1は偏光方向を45°回転させるファラデー回転器212を透過し、λ/2波長板222を透過してP偏光にされる。その励起光1は図8で述べた量子状態発生器120に入力し、出力としてポート1から反射してきた励起光2と、ポート2からのスクィズド光3を得る。
【0044】
スクィズド光3は変調器141で信号が重畳された信号光となり、偏光ビームスプリッタ161に加えられる。ポート1から出力された励起光2はλ/2波長板222とファラデー回転器212を透過して偏光ビームスプリッタ231に戻る。励起光2はファラデー回転器212を往復で2度通過しているので合計90°偏波が回転し、偏光ビームスプリッタ231へはS偏光の入力となる。偏光ビームスプリッタ231で反射されたS偏光は、遅延器145で光路長を調整され、λ/2波長板151で偏波が調整された後、偏光ビームスプリッタ161で信号光と一緒にされる。偏光ビームスプリッタ231で反射されたS偏光は受信器において信号光検出のための参照光として利用される。
【0045】
図12は、図11の部品数を減らして構成をより簡単にしたものを示す。励起光源110から出力した励起光はアイソレータ213とλ/2波長板221を透過してP偏光で偏光ビームスプリッタ231に入力される。偏光ビームスプリッタ231を透過した励起光1は偏光方向を45°回転させるファラデー回転器212を透過し、λ/2波長板222を透過してP偏光にされ、量子状態発生器121に入力する。量子状態発生器121は図8で述べた量子状態発生器120からファラデー回転器26を省略したものである。ファラデー回転器26が省略されているため、量子状態発生器121を往復してきた励起光は偏光が90°回転するだけなので、出力としてポート2に反射してきた励起光2が得られ、ポート1にスクィズド光3を得る。
【0046】
励起光2は遅延器145で光路長を調整され、偏光ビームスプリッタ161で反射する。ポート1から出力されたスクィズド光3はλ/2波長板222とファラデー回転器212を透過して偏光ビームスプリッタ231に戻る。スクィズド光3はファラデー回転器212を往復で2度通過しているので合計90°偏波が回転し、偏光ビームスプリッタ231へはS偏光の入力となって反射する。反射後は変調器141で信号が重畳されて信号光となり、λ/2波長板151で偏波が調整された後、偏光ビームスプリッタ161で参照光と一緒にされる。遅延器145で光路長を調整された励起光2は受信器において信号光検出のための参照光として利用される。
【0047】
(実施例4)
図13は、実施例2で説明した量子状態発生器120により生成したスクィズド光からもつれ合った量子光対を生成する例を示す図である。ここでは、図8で説明した量子状態発生器120によるものとした。励起光源301から出力した励起光はアイソレータ311とλ/2波長板321を透過して偏光ビームスプリッタ331に入力する。λ/2波長板321は偏光ビームスプリッタ331からの2つの出力光の強度が等しくなるように調整する。偏光ビームスプリッタ331の透過光はP偏光であり量子状態発生器101に入力してS偏波のスクィズド光391を得る。偏光ビームスプリッタ331の反射光はS偏光で、偏光ビームスプリッタ332に入力して反射される。45°回転のファラデー回転器312を透過してλ/2波長板322でP偏光に調整されて量子状態発生器102に入力する。量子状態発生器102からの出力であるスクィズド光392はS偏光で、ビームスプリッタ341でもう一方のスクィズド光391と合波されて互いに量子力学的にもつれ合った2モードスクィズド状態のビーム393と394を得る。ビームスプリッタ341における合波ではスクィズド光391と392の位相が固定されていなければならないため、ビーム394の一部をビームスプリッタ342で取り出し、その信号から制御器352で391と392の位相状態を解析し、391と392の位相が一定になるようにピエゾ素子351を調整する。
【0048】
量子状態発生器102において反射してきた励起光396はλ/2波長板322とファラデー回転器312を透過してP偏光になって偏光ビームスプリッタ332に戻り透過する。ビーム396はビーム393と394を検出するための参照光として利用できる。
【0049】
図13を参照して、量子力学的にもつれ合った2モードスクィズド状態を生成する方法を述べた。ここではその2モードスクィズド状態を用いて量子力学的信号の伝送も可能な量子テレポーテーションを実施する方法を述べる。
【0050】
図14は2モードスクィズド状態を用いて量子力学的信号の伝送も可能な量子テレポーテーションを実施する一例を示すブロック図である。302は2モードスクィズド状態生成器、400は送信機、460は受信機である。491は伝送したい入力光信号であり、これは量子光でも古典光でも構わない。伝送用の光ファイバ451、452を伝わる光信号は古典光であるが、出力信号光497は入力光信号491を再現するものとなる。この再現を手助けしているのが2モードスクィズド状態生成器302の二つの出力393と394である。即ち、入力光信号491の再構築に必要な情報の伝送は古典回線を利用するが、信号情報を含まない量子状態の伝送は別の量子回線を利用する。入力光信号は、これら古典回線による信号情報と量子回線で伝送される量子状態のすべてがそろって初めて再現できるものであり、どちらか一方を欠いただけでも情報として意味のある出力光は得られない。したがって、時間空間的にこれらを独立に伝送すれば絶対安全な通信が可能になる。以下、具体的な処理の流れを述べる。
【0051】
送信機400では、入力信号光491は50:50のビームスプリッタ411で2モードスクィズド光394と合波される。合波された2つのビーム492と493はそれぞれ、50:50のビームスプリッタ413と414によって局部発振レーザー光源401からの出力光と合波されて光検出器421及び422のペアあるいは423及び424のペアにより平衡型ホモダイン検出される。2つの平衡型ホモダイン検出の出力信号は、491と394の合波光の2つの直交位相成分をそれぞれ出力するようになっている。平衡型ホモダイン検出の出力信号は電気−光変換器436及び437により光信号に変換されて、光ファイバ451、452を介して受信機460に伝送される。
【0052】
受信機460では光−電気変換器471及び472により再び電気信号に変換されて局部発振レーザー461からの出力光を振幅変調および位相変調する。変調されたレーザー光496をビームスプリッタ478により、他の2モードスクィズド光393と合波すれば、入力光信号491を再現した出力光497が得られる。この2モードスクィズド光393は、光ファイバ451、452とは分離された伝送回線により伝送する。出力光497を得る際に2モードスクィズド光393を完全に使い切ることが原理的には必要なので、ビームスプリッタ478の反射率は極力大きく、例えば99%に設定する。変調されたレーザー光496の透過率は1%に下がってしまうが、局部発振レーザー461からの出力強度を十分に大きく取れば問題ない。以上の構成により量子テレポーテーションが可能になる。
【0053】
(実施例5)
本発明では一般の単一モードファイバを用いてスクィズド光生成が可能なことを示している。しかしながら、ファイバの部分はより一般的には任意の単一モード導波路でよく、平面型光導波回路(PLC)を用いることもできる。PLCではコアを小さくすることも可能で非線形性を大きくすることができ、効率的にスクィズド光を生成できる。またPLCは一般に円対称な導波路でないために大きな複屈折を持つ。本発明では2つの偏光モードを独立なビームとみなしているために2つの偏光モードにあるパルス光が時間的に分離している必要がある。実施例2においては偏波保存ファイバやその他の方法を用いて2つの偏光成分の時間的分離を図った。PLCでは2つの機能を同時に達成でき、複屈折が大きいことでこの時間的分離を図り、合わせて非線形性の大きいことで効率的なスクィズド状態生成が可能になる。以下、PLCを用いたスクィズド光生成器の例を説明する。
【0054】
図15aは、図8に示したスクィズド光生成器にPLCを用いた例を示す構成図である。図8と図15とを対比して明らかなように、偏波保存ファイバ36と光ファイバ37がPLC(平面型光導波回路)71に置換されて2つの機能を同時に達成している。
【0055】
PLCは偏波保存なのでファラデー回転器27の機能をλ/4波長板41にさせることもできる(図15b)。λ/4波長板41の光軸はPLC71の光軸と45°をなすように調整する。ファラデー回転器は1往復で偏波を一律に90°回転させるが、上記のように調整されたλ/4波長板は往復で直交する2つの偏波を交換させる。したがって、偏光ビームスプリッタ11を透過した励起光がPLC71を往復して戻ってきた際に往復前と同じ偏光に戻っているためには、ファラデー回転器の場合には180°回転している必要があり26と27の2つを用いるが、λ/4波長板41の場合は2つの偏光の軸が入れ替わっているだけなので、合波したものの偏光方向はPLC71の往復の前後で同じになり、λ/4波長板は41の一枚でよい。ファラデー回転器を用いた構成でもλ/4波長板を用いた構成でもPLCを使用することにより、小型化と非線形性の増加を同時に実現でき、より効率的にスクィズド光を生成できる。
【0056】
図16はPLC71を用いたスクィズド光生成器の他の例を示す構成図である。図15bの構成では、λ/4波長板41がPLC71の外部に設置されていた。これをPLC71の内部に埋め込んだ点において異なる。PLC71の内部にλ/4波長板41の挿入のための穴を開け、そこにλ/4波長板41をはめ込む。ミラー51に代えて、PLC71の端面に反射コーティング76を施せばよい。
【0057】
図17(A)はPLCを用いてさらにスクィズド光生成器の構成を簡単にした構成図、図17(B)、図17(C)はその一部の断面を示す。図16においてλ/4波長板41をはめ込んでいたのに代えて、PLC内にλ/4波長板を作りつけるものである。
【0058】
図15bで説明したPLC71の光学軸とλ/4波長板27の光学軸は45°の角度をなしている。通常のPLCでは光学軸は面内と面に垂直な方向にある。図17では、PLC71の導波部73ではその方向に光学軸があるが、導波部75ではその光学軸が導波方向を中心軸にして45°傾かせてある。長さをλ/4分にすることによりPLC内にλ/4波長板を作りつけることができる。導波部74は、互いに異なる構造になっている導波部73と75をスムーズにつなげるための部分である。導波部75の一方の端面はPLC全体の端面と一致させ、その面に高反射ミラーコーティング76を施し、小型一体型のスクィズド光生成器にする。
【0059】
図17(B)は導波部73の端面を示す断面図であり、図17(C)は導波部75の端面を示す断面図である。図17(B)に示すように、通常のPLC導波路の導波部73は断面が長方形をしており、光軸方向が基板73aに平行な方向と垂直な方向になる。73bが導波路のコア、73cがカバー層で、基板73aとカバー層73cが導波路のクラッドとして働く。一方、図17(C)に示すように、導波路のコア75bの断面形状の対称性を崩せば光学軸方向が回転し、波長板の機能を持たせることが出来るようになる。図17(B)および図17(C)に示す断面形状のコアを直接つなぐと接続面で反射が発生するので、導波部74を設けて滑らかにつなぐ。λ/4波長板の機能は導波部74と導波部75の全体で達成するようにそれぞれの長さを決める。
【0060】
(実施例6)
図18は光ファイバを用いて一体型スクィズド光生成器を実現する構成を示す図である。図8と図18とを対比して明らかなように、光ファイバ37が偏波保存ファイバ36に置換され、ファラデー回転器27がファイバ型のλ/4波長板35に置換され、ファラデー回転器26が省略されている。一般のファイバとして偏波保存ファイバ36を用いているので改めて偏光の時間的な分離のための偏波保存ファイバは不要である。図18に示すようにファイバ型λ/4波長板35は通常の単一モードファイバ32と回転器具38、39で構成される。回転器具38、39にはそれぞれ単一モードファイバ32の一部が一巻きあるいは二巻きされており、図に示す矢印の方向に捻じることにより、単一モードファイバ32の複屈折が変化し、λ/4波長板あるいはλ/2波長板として機能する。回転器具は原理的にはファイバを一巻きしたλ/4波長板相当の片方でよいが、調整範囲を確実に確保するためにλ/2波長板相当のものも入れておく。さらに確実性を求めるならばもう1つλ/4波長板相当の一巻きした回転器具を加える。偏波保存ファイバ36と通常の単一モードファイバ32を融着し、32のもう一方の端面に高反射コーティング34を施せば一体型のスクィズド光生成器になる。
【産業上の利用可能性】
【0061】
本発明は安全性の高い量子通信を実現するための方法を提供している。情報の安全性は高度情報化社会を支えるための重要なインフラであり、本発明は安全性の保障された社会を実現するために利用される。
【図面の簡単な説明】
【0062】
【図1】本発明の基本形態のひとつを示すシステム構成図である。
【図2】同一の光源を種光として直交する偏光で時間的に重なった偏光の信号光391及び参照光392を生成するための送信機の構成の一例を示すブロック図である。
【図3】参照光192及び信号光194の偏波が特定されている場合の受信機の構成の一例を示すブロック図である。
【図4】偏波調整器211を分波器220への入力前に設置する場合の受信機の構成の一例を示すブロック図である。
【図5】偏波調整器211を分波器220への入力前に設置する場合の受信機の構成の他の一例を示すブロック図である。
【図6】偏波調整器211を分波器220への入力前に設置する場合の受信機の構成のさらに他の一例を示すブロック図である。
【図7】参照光を増幅・波形整形する必要がない場合の受信機の構成の例を示すブロック図である。
【図8】本発明を特徴付ける量子状態発生器120の構成例1を示すブロック図である。
【図9】本発明を特徴付ける量子状態発生器120の構成例2を示すブロック図である。
【図10】本発明を特徴付ける量子状態発生器120の構成例3を示すブロック図である。
【図11】実施例2で説明した量子状態発生器120により生成したスクィズド光を信号光にして光通信をする場合の送信機100の例を示す図である。
【図12】図11に示す送信機100の構成を簡単にする例を示した図である。
【図13】実施例2で説明した量子状態発生器120により生成したスクィズド光からもつれ合った量子光対を生成する例を示す図である。
【図14】2モードスクィズド状態を用いて量子力学的信号の伝送も可能な量子テレポーテーションを実施する一例を示すブロック図である。
【図15a】図8に示したスクィズド光生成器にPLCを用いた例を示す構成図である。
【図15b】図15aの構成図においてファラデー回転器をλ/4波長板に置き換えた場合の構成例を示した図である。
【図16】PLC71を用いたスクィズド光生成器の他の例を示す構成図である。
【図17】(A)はPLCを用いて、さらにスクィズド光生成器の構成を簡単にした例を説明する構成図、(B)、(C)は、その一部の断面を示す断面図である。
【図18】光ファイバを用いて一体型スクィズド光生成器を実現する構成を示す図である。
【符号の説明】
【0063】
1…励起光、2…光、3,391、392…スクィズド光、6,7…光路、11,16,17,161,231,245,331,332,342…偏光ビームスプリッタ、21,322…λ/2波長板、26,27,212,312…ファラデー回転器、32…単一モードファイバ、33…ファイバ型波長板固定台、34…高反射コーティング、35…ファイバ型波長板、36…偏波保存光ファイバ、37…ファイバ、38、39…回転器具、51…ミラー、61,62,63,64…コリメータレンズ、71…PLC(平面型光導波回路)、41…λ/4波長板、73,74,75…導波部、73a,75a…基板、73b,75b…導波路のコア、73c,75c…カバー層、76…反射コーティング、100…光送信機、101,102,120,121…量子状態発生器、110,301…励起光源、141…変調器、142,231…増幅器、145…光遅延器、151,152…偏波調整器、161…合波器、191…出力光、192,292…参照光、193…量子光、194,291…量子信号光、200…光受信機、211,215,221,222…偏波調整器、212…偏光解析器、213,311…アイソレータ、216…強度解析器、220…分波器、232…波形整形器、241,249,341、342、411,412,413,414、478…ビームスプリッタ、242,243…光検出器、246…電気回路、300…光ファイバ、302…2モードスクィズド状態生成器、393,394…2モードスクィズド光、396…ビーム、400…送信機、401,461…局部発振レーザー光源、421,422,423,424…光検出器、436,437…電気−光変換器,471,472…光−電気変換器、451,452…古典信号用の光ファイバ、460…受信機、476…振幅変調器、477…位相変調器、491…入力光信号、497…出力信号光、496…レーザー光。

【特許請求の範囲】
【請求項1】
ひとつの光源を励起源とする量子状態発生器と、該量子状態発生器から出力される量子状態に信号を重畳して信号光にするための変調器と、前記変調器から出力される信号光に対する偏波調整器と、前記量子状態発生器から放出される非量子光である参照光の光路長を調整する光遅延器と、前記参照光に対する偏波調整器と、信号光及び参照光を時空間的に重なり且つ直交した偏光状態に合波するための偏光合波器と、を有する光送信機において、
前記量子状態発生器は、偏光分離器と、第1のファラデー回転器、2つの偏波を互いに遅延させる手段、光ファイバおよび第2のファラデー回転器からなる光路と、高反射ミラーを備え、前記偏光分離器に直線偏光を入射させ、その出力光を前記光路を伝播させた後、前記高反射ミラーで前記同一光路に折り返して逆方向に伝播させた後、前記偏光分離器に戻り、当初入力した直線偏光と、上記一連の光路での光の伝播で生成されたスクィズド光を分離して取り出すものであることを特徴とする光送信機。
【請求項2】
前記光路は前記第1のファラデー回転器の後段にλ/2波長板を具備する請求項1記載の光送信機。
【請求項3】
前記光路を構成している、2つの偏波を互いに遅延させる手段は偏波保存光ファイバである請求項1記載の光送信機。
【請求項4】
前記光路を構成している、2つの偏波を互いに遅延させる手段は偏波保存光ファイバであるとともに、該偏波保存光ファイバは光ファイバと融着されている請求項1記載の光送信機。
【請求項5】
前記光路を構成している、2つの偏波を互いに遅延させる手段は2つの偏光ビームスプリッタで構成され、その一つ目の偏光ビームスプリッタで2つの光路に分離し、二つの光路に遅延を付けたうえで二つ目の偏光ビームスプリッタで再合成される請求項1記載の光送信機。
【請求項6】
ひとつの光源を励起源とする量子状態発生器と、
該量子状態発生器から出力される量子状態に信号を重畳して信号光にするための変調器と、
前記変調器から出力される信号光に対する偏波調整器と、
前記量子状態発生器から放出される非量子光である参照光の光路長を調整する光遅延器と、
前記参照光に対する偏波調整器と、
信号光及び参照光を時空間的に重なり且つ直交した偏光状態に合波するための偏光合波器とからなる光送信機と、
前記光送信機の送信する信号を伝送する光ファイバと、
前記光ファイバから受信する信号から参照光を用いて送信信号で変調された量子光を検出し、その検出信号から送られてきた送信信号を得る光受信機と、
よりなることを特徴とする光送受信システムにおいて、
前記量子状態発生器は、偏光分離器と、第1のファラデー回転器、2つの偏波を互いに遅延させる手段、光ファイバおよび第2のファラデー回転器からなる光路と、高反射ミラーを備え、前記偏光分離器に直線偏光を入射させ、その出力光を前記光路を伝播させた後、前記高反射ミラーで前記同一光路に折り返して逆方向に伝播させた後、前記偏光分離器に戻り、当初入力した直線偏光と、上記一連の光路での光の伝播で生成されたスクィズド光を分離して取り出すものであることを特徴とする光送受信システム。
【請求項7】
前記光路は、前記第1のファラデー回転器の後段にλ/2波長板を具備する請求項6記載の光送受信システム。
【請求項8】
前記光路を構成している、2つの偏波を互いに遅延させる手段は偏波保存光ファイバである請求項6記載の光送受信システム。
【請求項9】
前記光路を構成している、2つの偏波を互いに遅延させる手段は偏波保存光ファイバであるとともに、該偏波保存光ファイバは光ファイバと融着されている請求項6記載の光送受信システム。
【請求項10】
前記光路を構成している、2つの偏波を互いに遅延させる手段は2つの偏光ビームスプリッタで構成され、その一つ目の偏光ビームスプリッタで2つの光路に分離し、二つの光路に遅延を付けたうえで二つ目の偏光ビームスプリッタで再合成される請求項6記載の光送受信システム。
【請求項11】
偏光分離器と、第1のファラデー回転器、2つの偏波を互いに遅延させる手段、光ファイバおよび第2のファラデー回転器からなる光路と、高反射ミラーを備え、前記偏光分離器に直線偏光を入射させ、その出力光を前記光路を伝播させた後、前記高反射ミラーで前記同一光路に折り返して逆方向に伝播させた後、前記偏光分離器に戻り、当初入力した直線偏光と、上記一連の光路での光の伝播で生成されたスクィズド光を分離して取り出すものであることを特徴とする量子光生成器。
【請求項12】
前記第1のファラデー回転器の後段にλ/2波長板を具備する請求項11記載の量子光生成器。
【請求項13】
前記2つの偏波を互いに遅延させる手段が偏波保存光ファイバである請求項11記載の量子光生成器。
【請求項14】
前記2つの偏波を互いに遅延させる手段が偏波保存光ファイバであり、該偏波保存光ファイバは後段の光ファイバと融着されている請求項11記載の量子光生成器。
【請求項15】
前記2つの偏波を互いに遅延させる手段は2つの偏光ビームスプリッタで構成され、その一つ目の偏光ビームスプリッタで2つの光路に分離し、二つの光路に遅延を付けたうえで二つ目の偏光ビームスプリッタで再合成される請求項11記載の量子光生成器。
【請求項16】
請求項1記載の量子状態発生器において、第1のファラデー回転器と2つの偏波を互いに遅延させる手段を省略し、光ファイバと第2のファラデー回転器をそれぞれ偏波保存の導波路とλ/4波長板に置き換え、偏光分離器と偏波保存の導波路とλ/4波長板からなる光路と高反射ミラーを備えた量子状態発生器とし、前記偏光分離器に直線偏光を入射させ、その出力光を前記光路を伝播させた後、前記高反射ミラーで前記同一光路に折り返して逆方向に伝播させた後、前記偏光分離器に戻り、当初入力した直線偏光と、上記一連の光路での光の伝播で生成されたスクィズド光を分離して取り出すことを特徴とする光送信機。
【請求項17】
前記光路は前記導波路の前段にλ/2波長板を具備する請求項16記載の光送信機。
【請求項18】
請求項16記載の導波路が平面光導波回路(PLC)からなることを特徴とする光送信機。
【請求項19】
請求項16記載のλ/4波長板がファイバ型の波長板であることを特徴とする光送信機。
【請求項20】
請求項6記載の量子状態発生器において、第1のファラデー回転器と2つの偏波を互いに遅延させる手段を省略し、光ファイバと第2のファラデー回転器をそれぞれ偏波保存の導波路とλ/4波長板に置き換え、偏光分離器と偏波保存の導波路とλ/4波長板からなる光路と高反射ミラーを備えた量子状態発生器とし、前記偏光分離器に直線偏光を入射させ、その出力光を前記光路を伝播させた後、前記高反射ミラーで前記同一光路に折り返して逆方向に伝播させた後、前記偏光分離器に戻り、当初入力した直線偏光と、上記一連の光路での光の伝播で生成されたスクィズド光を分離して取り出すことを特徴とする光送受信システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15a】
image rotate

【図15b】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2006−191410(P2006−191410A)
【公開日】平成18年7月20日(2006.7.20)
【国際特許分類】
【出願番号】特願2005−2071(P2005−2071)
【出願日】平成17年1月7日(2005.1.7)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】