説明

電気脱イオン装置、純水製造方法及び燃料電池システム

【課題】電気脱イオン装置の通水を水頭差のみで行うことが可能な電気脱イオン装置と、この電気脱イオン装置を用いた純水製造方法と、この電気脱イオン装置を備えた燃料電池システムを提供する。
【解決手段】原水槽12内の原水が配管13を介して脱塩室9の一端側に導入され、他端側から純水が配管14を介して取り出され、純水槽15に導入される。原水槽12と純水槽15との水頭差によって原水が脱塩室9に通水され、ポンプは用いない。純水槽15のオーバーフロー水が陽極側濃縮室8から配管17を介して濃縮室兼陰極室3に通水される。陽極室7内の水は相互拡散により原水槽12内の原水と徐々に置換される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気脱イオン装置と、この電気脱イオン装置を用いた純水製造方法と、この電気脱イオン装置を備えた燃料電池システムに関する。
【背景技術】
【0002】
燃料電池発電装置は、例えば都市ガス、LPガス、メタノール等の原燃料ガスを、水蒸気改質して水素に富むガスに改質する改質器と、この改質器で得られた改質ガスを燃料として発電を行う燃料電池本体とを備えている。
【0003】
改質器で生成した改質ガスは、燃料電池の負荷及び水素利用率に応じて、燃料電池内部で消費され、余剰の水素を含むガスはオフガス(燃料排ガス)として改質器へ導かれた上でバーナーで燃焼され、改質エネルギーとして消費されるように構成されることが多い。
【0004】
特許文献1には、燃料電池本体で生じた凝縮水を電気脱イオン装置で処理して純水とし、この純水を燃料電池本体及び改質器に供給することが記載されている。
【0005】
電気脱イオン装置は、一般に、陽極と陰極との間にイオン交換膜を配置することにより少なくとも陰極側濃縮室、脱塩室、陽極側濃縮室を形成したものであり、原水が該脱塩室に通水されて純水として取り出される。濃縮室に通水される水は濃縮水と称される。
【0006】
特許文献2には、陽極側濃縮室と陽極との間に陽極室を設け、陰極側濃縮室と陰極との間に陰極室を設けた電気脱イオン装置において、電極水(洗い水と称されることもある。)として、生産水(脱塩室流出水)の一部を分取し、これを陽極室から陰極室に通水することが記載されている。このように、生産水を陽極室から陰極室に通水する場合、陽極室での通水圧損が大きいので、ポンプを使用する必要があり、ポンプの動力分だけ電力消費が多い。
【0007】
なお、陽極室での通水圧損が大きい理由は、陽極室で水素ガスが発生し、この水素ガスが微細な気泡となって陽極室に充填されたカチオン交換樹脂などの粒状充填物に付着し、粒状充填物同士の間の空隙を閉塞するためである。因みに、陰極室でも酸素ガスが発生するが、発生酸素ガスの体積は陽極室の水素発生ガス量の1/2であり、陰極室での通水圧損上昇は陽極室に比べて小さい。
【0008】
ところで、従来の電気脱イオン装置にあっては、イオン交換膜が上下方向に配設され、脱塩室及び濃縮室が上下方向に延設され、原水及び濃縮水はいずれも上下方向に通水されることが多い(例えば特許文献2の図9)が、特許文献2の図3には、原水を上から下へ通水し、濃縮水を水平方向に流す電気脱イオン装置が記載されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2001−176535
【特許文献2】特開2004−34004
【発明の概要】
【発明が解決しようとする課題】
【0010】
家庭用燃料電池は、発電量が小さいので、燃料電池用電気脱イオン装置の消費電力をなるべく小さくすることが望ましい。
【0011】
本発明は、電気脱イオン装置の通水を水頭差のみで行うことが可能な電気脱イオン装置と、この電気脱イオン装置を備えた燃料電池システムを提供することを目的とする。
【課題を解決するための手段】
【0012】
請求項1の電気脱イオン装置は、陽極と陰極との間にイオン交換膜を配置することにより、陰極側濃縮室、脱塩室、陽極側濃縮室を設け、少なくとも該脱塩室にイオン交換体を充填してなり、該脱塩室に原水を通水する電気脱イオン装置において、洗い水を該陽極側濃縮室に供給し、該陽極側濃縮室の流出水を該陰極側濃縮室に通水することを特徴とするものである。
【0013】
請求項2の電気脱イオン装置は、陽極と陰極との間にイオン交換膜を配置することにより、陰極側濃縮室兼陰極室、脱塩室、陽極側濃縮室及び陽極室を設け、少なくとも該脱塩室にイオン交換体を充填してなり、該脱塩室に原水を通水する電気脱イオン装置において、洗い水を該陽極側濃縮室に供給し、該陽極側濃縮室の流出水を該陰極側濃縮室兼陰極室に通水することを特徴とするものである。
【0014】
請求項3の電気脱イオン装置は、請求項1または2において、前記脱塩室の流入側に原水槽が接続され、該脱塩室の流出側に純水槽が接続されており、原水が該原水槽から脱塩室を通って純水槽へ、原水槽と該純水槽との水頭差によって通水されることを特徴とするものである。
【0015】
請求項4の電気脱イオン装置は、請求項3において、前記純水槽のオーバーフロー水が、前記陽極側濃縮室から陰極側濃縮室の流出側へ、該純水槽と該流出側との水頭差によって通水されることを特徴とするものである。
【0016】
請求項5の電気脱イオン装置は、請求項4において、前記陽極室は、前記原水槽にのみ接続されており、該陽極室内の電極水は、原水槽内の原水と相互拡散によって置換されるよう構成されていることを特徴とするものである。
【0017】
請求項6の電気脱イオン装置は、請求項1ないし5のいずれか1項において、各室の水平方向の一方の側端面と他方の側端面にそれぞれ通水部が設けられており、各室内においていずれか一方の通水部から他方の通水部に向って通水が行われることを特徴とするものである。
【0018】
請求項7の電気脱イオン装置は、請求項6において、前記イオン交換膜が上下方向に配設されることにより、各室がそれぞれ上下方向かつ水平方向に延在していることを特徴とするものである。
【0019】
請求項8の電気脱イオン装置は、請求項7において、イオン交換体が充填された室の頂部から上方に突出するように、イオン交換体の貯留部が設けられていることを特徴とするものである。
【0020】
請求項9の電気脱イオン装置は、請求項6ないし8のいずれか1項において、充填されたイオン交換体を前記一方の側端面と他方の側端面とを結ぶ水平方向に挟圧する挟圧手段が設けられていることを特徴とするものである。
【0021】
請求項10の電気脱イオン装置は、請求項6ないし9のいずれか1項において、少なくとも1つの室の流入側に気液分離手段を設けたことを特徴とするものである。
【0022】
請求項11の純水製造方法は、請求項1ないし10のいずれか1項の電気脱イオン装置の脱塩室に原水を通水し、陽極側濃縮室から陰極側濃縮室に洗い水を通水して純水を製造することを特徴とするものである。
【0023】
請求項12の燃料電池システムは、請求項1ないし10のいずれか1項に記載の電気脱イオン装置と、該電気脱イオン装置から純水が供給される燃料電池本体及び改質器とを有するものである。
【発明の効果】
【0024】
本発明の電気脱イオン装置は、3室以上の構造であれば、特に限定されず使用できる。3室構造であれば、陽極側濃縮室兼陽極室、脱塩室、陰極側濃縮室兼陰極室を有する。4室構造であれば、陽極室、陽極側濃縮室、脱塩室、陰極側濃縮室兼陰極室を有する。3室構造では、洗い水をこの陽極側濃縮室兼陽極室に供給し、陽極側濃縮室兼陽極室の流出水を陰極側濃縮室兼陰極室に通水する。4室構造では、洗い水をこの陽極側濃縮室に供給し、陽極側濃縮室の流出水を陰極側濃縮室兼陰極室に通水し、陽極室には通水しない。
【0025】
このように通水圧損の大きい陽極室に洗い水を通水しないので、ポンプを用いることなく、水頭差のみによって洗い水を通水することができる。ポンプを用いないことにより、電気脱イオン装置の消費電力が減少する。
【0026】
本発明では、原水槽及び純水槽を脱塩室に接続し、原水槽と純水槽との水頭差によって原水を脱塩室に通水するのが好ましい。これにより、原水通水用のポンプも不要となる。
【0027】
本発明では、この純水槽のオーバーフロー水を洗い水として、3室構造であれば、陽極側濃縮室兼陽極室に供給し、4室構造であれば、陽極側濃縮室に供給し、陰極側濃縮室兼陰極室の流出側まで水頭差によって通水するのが好ましい。また、この場合、陽極室を原水槽と接続し、陽極室内の電極水が原水槽内の原水と相互拡散によって置換されるようにするのが好ましい。これにより、洗い水通水用のポンプも不要となる。
【0028】
本発明の一態様では、各室に一方の側端面から他方の側端面に向って略水平方向に通水が行われる。このように構成することにより、電気脱イオン装置の高さを小さくすることができる。
【0029】
各イオン交換膜を上下方向に配設し、各室を水平方向及び上下方向に延在する構成としてもよい。この場合、充填されたイオン交換体に隙間が生じないようにするために、イオン交換体が充填された室の頂部にイオン交換体の貯留部を設けるのが好ましい。
【0030】
また、イオン交換体を一方の側端面と他方の側端面とを結ぶ水平方向に挟圧することにより、イオン交換体に隙間が生じることを防止してもよい。また、このように略水平方向に通水する場合、室内に気泡が溜まることを防止するために、室の流入側に気液分離手段を設けるのが好ましい。
【図面の簡単な説明】
【0031】
【図1】(a)図は3室構造の実施の形態に係る電気脱イオン装置の模式的な斜視図、(b)図は(a)図のB−B線断面図である。
【図2】別の実施の形態に係る電気脱イオン装置の縦断面図である。
【図3】別の実施の形態に係る電気脱イオン装置の縦断面図である。
【図4】別の実施の形態に係る電気脱イオン装置の縦断面図である。
【図5】別の実施の形態に係る電気脱イオン装置の縦断面図である。
【図6】電気脱イオン装置を備えた燃料電池システムのブロック図である。
【図7】(a)図は4室構造の実施の形態に係る電気脱イオン装置の模式的な斜視図、(b)図は(a)図のB−B線断面図である。
【発明を実施するための形態】
【0032】
以下、図面を参照して実施の形態について説明する。なお、本発明の電気脱イオン装置の構造は3室以上であれば限定されないが、まず図7に示す4室構造を例にして説明する。
【0033】
<図7の電気脱イオン装置>
電気脱イオン装置1は、陽極2と陰極3との間にカチオン交換膜4、アニオン交換膜5及びカチオン交換膜6をこの順に配設し、陽極室7、陽極側濃縮室8、脱塩室9、陰極側濃縮室兼陰極室10を設けたものである。この実施の形態では、板状陽極2、板状陰極3、各イオン交換膜4,5,6はいずれも上下方向に配設されており、各室7〜10は水平方向かつ上下方向に延在している。
【0034】
濃縮室兼陰極室10及び陽極室7にはカチオン交換樹脂が充填されている。陽極側濃縮室8にはアニオン交換樹脂が充填されている。
【0035】
なお、陽極室7内ではイオン交換する必要がなく、また、発生する電解ガスを上部に逃すだけのスペースが室内に存在すればよいため、陽極室7に充填する導電体としては、耐食性導電性金属等の導電体、例えばステンレスであってもよい。また、導電体の形状としては、通電抵抗が大きくならないものであれば特に限定されず、粒状、多孔体、繊維状、メッシュ状、金網状等であってもよいが、ステンレス製繊維が好適に用いられる。導電体は、脱塩室以外の各室に充填することができる。
【0036】
脱塩室9にはカチオン交換樹脂とアニオン交換樹脂とが混床型にて充填されている。但し、カチオン交換樹脂とアニオン交換樹脂を交互に配置した積層型でも構わない。イオン交換樹脂は、イオン交換の能力があれば、形状は特に限定されず、粒状イオン交換樹脂以外でも、イオン交換繊維、多孔性イオン交換体等を充填することができる。
【0037】
この電気脱イオン装置1の一端側に原水槽12が配置され、他端側に純水槽15が配置されている。原水槽12内の原水が配管13を介して脱塩室9の一端側(図7の右端側)に導入され、他端側(図7の左端側)から純水が配管14を介して取り出され、純水槽15に導入される。この実施の形態では、原水槽12と純水槽15との水頭差によって原水が脱塩室9に通水され、ポンプは用いられない。
【0038】
純水槽15のオーバーフロー水が配管16を介して陽極側濃縮室8の他端側に導入される。該濃縮室8からの流出水は、該濃縮室8の一端側から配管17を介して濃縮室兼陰極室10の他端側に導入され、濃縮室兼陰極室10の一端側の配管18から排水として排出される。この洗い水の通水も、純水槽15と濃縮室兼陰極室10の該一端側の流出部との水頭差によって行われ、ポンプは用いられない。
【0039】
室8、10への洗い水の通水方向は、脱塩室9内の通水方向と反対方向である。これは、脱塩室9の流出側の方がイオン濃度が低いためである。
【0040】
陽極室7は配管19を介して原水槽12内に連通している。これにより、陽極室7内の水は相互拡散により原水槽12内の原水と徐々に置換される。配管19は、好ましくは、陽極室7の上部に接続され、また原水槽12に向って上り勾配とされる。
【0041】
純水槽15内の純水は、ポンプ20によってユースポイント(後述の燃料電池システムの燃料改質器や冷却水タンク)に送られる。
【0042】
このように、この電気脱イオン装置1への原水の通水及び洗い水の通水は水頭差によってのみ行われ、ポンプは用いられないので、この電気脱イオン装置1は消費電力が少ない。また、この実施の形態では、各室7〜10を上下方向かつ水平方向に延在したものとし、通水方向を略水平方向としているので、電気脱イオン装置1の高さが小さいものとなる。
【0043】
この電気脱イオン装置を備えた燃料電池システムの一例について図6を参照して説明する。図6は、都市ガスなどから水素を製造する燃料処理系を有する固体高分子型燃料電池の一般的な構成を示す系統図であって、電解質(図示せず)を介して燃料極31及び空気極32が設けられた燃料電池本体33には、冷却のために、冷却水タンク34からポンプPにより冷却水が流通されている。
【0044】
都市ガス等の燃料は、燃料処理系35に導入され、改質器35Aで水素を主体とするガスに改質され、一酸化炭素変成器35Bで一酸化炭素成分が変成され、更に一酸化炭素除去器35Cで一酸化炭素が極めて低濃度に除去された後、燃料電池本体の加湿のために水分を含んだ状態で燃料極31に送給される。この燃料処理系35には、純水槽15から燃料処理や燃料ガスの加湿のための水蒸気発生用の純水が導入される。
【0045】
燃料極31の排ガスは、ポンプP、熱交換器37,38,37’及び貯湯槽39よりなる熱回収系の該熱交換器37’で熱回収された後、更に放熱器40で冷却され、気液分離器42に導入される。この気液分離器42の分離水(凝縮水)は、原水槽12に送給される。水素成分を含んだ分離ガスは改質器の燃料として利用され、燃焼後水蒸気として系外へ排出される。
【0046】
一方、空気極32には空気が導入され、この空気中の酸素により燃料極31に導入された改質ガスが電気化学的反応により酸化され、発電が行われる。この空気極32に導入される空気も加湿するために純水槽15から純水が導入されることがある。空気極32の排ガスは、熱交換器37で熱回収された後、更に放熱器40で冷却され、気液分離器41に導入される。この気液分離器41の分離水(凝縮水)は、原水槽12に送給され、分離ガスは排ガスとして系外に排出される。
【0047】
純水槽15内の純水は、ポンプ20により、燃料処理系35及び冷却水タンク34に送給される。この冷却水タンク34の冷却水は、ポンプPにより、燃料電池本体33の冷却部から、熱交換器38及び放熱器40を経て循環される。なお、原水槽12には、必要に応じ補給水として水道水が導入される。
【0048】
<図1の電気脱イオン装置>
図1を参照して3室構造の電気脱イオン装置1’について説明する。
この電気脱イオン装置1’は、陽極2と陰極3との間にアニオン交換膜5及びカチオン交換膜6をこの順に配設し、濃縮室兼陽極室7’、脱塩室9、陰極側濃縮室兼陰極室10を設けたものである。板状陽極2、板状陰極3、各イオン交換膜5,6はいずれも上下方向に配設されており、各室7’,9,10は水平方向かつ上下方向に延在している。
【0049】
濃縮室兼陰極室10にはカチオン交換樹脂が充填されている。濃縮室兼陽極室7’にはアニオン交換樹脂が充填されている。
【0050】
脱塩室9にはカチオン交換樹脂とアニオン交換樹脂とが混床型にて充填されている。但し、カチオン交換樹脂とアニオン交換樹脂を交互に配置した積層型でも構わない。
【0051】
この電気脱イオン装置1’の一端側に原水槽12が配置され、他端側に純水槽15が配置されている。原水槽12内の原水が配管13を介して脱塩室9の一端側(図1の右端側)に導入され、他端側(図1の左端側)から純水が配管14を介して取り出され、純水槽15に導入される。この実施の形態でも、原水槽12と純水槽15との水頭差によって原水が脱塩室9に通水され、ポンプは用いられない。
【0052】
純水槽15のオーバーフロー水が配管16を介して濃縮室兼陽極室7’の他端側に導入される。該濃縮室兼陽極室7’からの流出水は、該濃縮室兼陽極室7’の一端側から配管17を介して濃縮室兼陰極室10の他端側に導入され、濃縮室兼陰極室10の一端側の配管18から排水として排出される。この洗い水の通水も、純水槽15と濃縮室兼陰極室10の該一端側の流出部との水頭差によって行われ、ポンプは用いられない。
【0053】
室7’,10への洗い水の通水方向は、脱塩室9内の通水方向と反対方向である。これは、脱塩室9の流出側の方がイオン濃度が低いためである。
【0054】
純水槽15内の純水は、ポンプ20によってユースポイント(後述の燃料電池システムの燃料改質器や冷却水タンク)に送られる。
【0055】
このように、この電気脱イオン装置1’への原水の通水及び洗い水の通水は水頭差によってのみ行われ、ポンプは用いられないので、この電気脱イオン装置1’は消費電力が少ない。また、この実施の形態では、各室7’,9,10を上下方向かつ水平方向に延在したものとし、通水方向を略水平方向としているので、電気脱イオン装置1’の高さが小さいものとなる。
【0056】
<図2の実施の形態>
図1,7のように原水を脱塩室に水平方向に通水する電気脱イオン装置において、脱塩室内に通水される原水中に気泡が存在すると、この気泡が脱塩室内に溜り、原水とイオン交換樹脂との接触効率が低下することになる。
【0057】
そこで、本発明では、脱塩室に流入する原水から気泡を分離するための気液分離手段を設けてもよい。
【0058】
第2図は、そのような電気脱イオン装置の一例を示す縦断面図である。この電気脱イオン装置1Aにあっては、脱塩室9は通水性の区画部材22,23間にイオン交換樹脂を充填して形成されたものである。区画部材22の流入側に形成された前室21に原水槽12から原水が導入される。この前室21に気液分離手段として気液分離筒25が設けられている。なお、原水槽12内の原水をこの気液分離筒25に導入するようにしてもよい。
【0059】
図示はしないが、区画部材23の流出側に形成された後室24にも気液分離手段を設け、電気脱イオン装置1Aから送り出される純水を気液分離処理してもよい。なお、脱塩室以外の室の前室や、必要に応じ後室にも気液分離手段を設けてもよい。
【0060】
<図3〜5の実施の形態>
図1のように原水を脱塩室に水平方向に通水する場合、イオン交換樹脂の充填密度が低下すると、脱塩室の上部に空隙が生じることになる。
【0061】
この対策として、図3の電気脱イオン装置1Bのように、脱塩室9内のイオン交換樹脂を挟圧する手段を設けてもよい。図3では、流入側の区画部材22’が可動式となっており、バネ26によって区画部材23に向う方向、即ちイオン交換樹脂を挟圧する方向に押圧されている。区画部材23は固定設置されている。なお、区画部材22’にはバネ26を保持するホルダ26aが設けられている。脱塩室9内のイオン交換樹脂が区画部材22’,23によって挟圧されるので、脱塩室9内に空隙が発生することが防止される。
【0062】
図4,5の電気脱イオン装置1C,1Dでは、脱塩室9の頂部に、上方に膨出するようにイオン交換樹脂の貯留部27,28を設けている。この実施の形態では、貯留部27,28は下方ほど水平断面積が拡大するテーパ形状となっている。このテーパ角度は、イオン交換樹脂の水中での安息角(約15°程度)以上とするのが好ましい。図4では、貯留部27の頂面は水平となっている。図5では、貯留部28の頂部が尖頭状となっている。図5の貯留部28によると、空気が尖頭状部の最上部に集まるので、空気を排出し易い。また、貯留部28の全体にイオン交換樹脂を容易に充填することができる。
【0063】
この貯留部27,28を設けたことにより、脱塩室9内のイオン交換樹脂が減容した場合、貯留部27,28内のイオン交換樹脂が下方に移動するので、脱塩室内のイオン交換樹脂に空隙が生じることが防止される。
【0064】
図4,5のその他の符号は図2と同一部分を示している。図4,5では、貯留部27,28は脱塩室9の通水方向の中間付近に配置されているが、流入側又は流出側に近い側に設けられてもよい。
【符号の説明】
【0065】
1,1’,1A,1B,1C,1D 電気脱イオン装置
2 陽極
3 陰極
4,6 カチオン交換膜
5 アニオン交換膜
7 陽極室
7’ 濃縮室兼陽極室
8 陽極側濃縮室
9 脱塩室
10 陰極側濃縮室兼陰極室
12 原水槽
15 純水槽
25 気液分離筒
26 バネ
27,28 貯留部

【特許請求の範囲】
【請求項1】
陽極と陰極との間にイオン交換膜を配置することにより、陰極側濃縮室、脱塩室、陽極側濃縮室を設け、少なくとも該脱塩室にイオン交換体を充填してなり、該脱塩室に原水を通水する電気脱イオン装置において、洗い水を該陽極側濃縮室に供給し、該陽極側濃縮室の流出水を該陰極側濃縮室に通水することを特徴とする電気脱イオン装置。
【請求項2】
陽極と陰極との間にイオン交換膜を配置することにより、陰極側濃縮室兼陰極室、脱塩室、陽極側濃縮室及び陽極室を設け、少なくとも該脱塩室にイオン交換体を充填してなり、該脱塩室に原水を通水する電気脱イオン装置において、
洗い水を該陽極側濃縮室に供給し、該陽極側濃縮室の流出水を該陰極側濃縮室兼陰極室に通水することを特徴とする電気脱イオン装置。
【請求項3】
請求項1または2において、前記脱塩室の流入側に原水槽が接続され、該脱塩室の流出側に純水槽が接続されており、原水が該原水槽から脱塩室を通って純水槽へ、原水槽と該純水槽との水頭差によって通水されることを特徴とする電気脱イオン装置。
【請求項4】
請求項3において、前記純水槽のオーバーフロー水が、前記陽極側濃縮室から陰極側濃縮室の流出側へ、該純水槽と該流出側との水頭差によって通水されることを特徴とする電気脱イオン装置。
【請求項5】
請求項4において、前記陽極室は、前記原水槽にのみ接続されており、該陽極室内の電極水は、原水槽内の原水と相互拡散によって置換されるよう構成されていることを特徴とする電気脱イオン装置。
【請求項6】
請求項1ないし5のいずれか1項において、各室の水平方向の一方の側端面と他方の側端面にそれぞれ通水部が設けられており、各室内においていずれか一方の通水部から他方の通水部に向って通水が行われることを特徴とする電気脱イオン装置。
【請求項7】
請求項6において、前記イオン交換膜が上下方向に配設されることにより、各室がそれぞれ上下方向かつ水平方向に延在していることを特徴とする電気脱イオン装置。
【請求項8】
請求項7において、イオン交換体が充填された室の頂部から上方に突出するように、イオン交換体の貯留部が設けられていることを特徴とする電気脱イオン装置。
【請求項9】
請求項6ないし8のいずれか1項において、充填されたイオン交換体を前記一方の側端面と他方の側端面とを結ぶ水平方向に挟圧する挟圧手段が設けられていることを特徴とする電気脱イオン装置。
【請求項10】
請求項6ないし9のいずれか1項において、少なくとも1つの室の流入側に気液分離手段を設けたことを特徴とする電気脱イオン装置。
【請求項11】
請求項1ないし10のいずれか1項の電気脱イオン装置の脱塩室に原水を通水し、陽極側濃縮室から陰極側濃縮室に洗い水を通水して純水を製造することを特徴とする純水製造方法。
【請求項12】
請求項1ないし10のいずれか1項に記載の電気脱イオン装置と、該電気脱イオン装置から純水が供給される燃料電池本体及び改質器とを有する燃料電池システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−170906(P2012−170906A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−36154(P2011−36154)
【出願日】平成23年2月22日(2011.2.22)
【出願人】(000001063)栗田工業株式会社 (1,536)
【Fターム(参考)】