説明

顕微鏡

【課題】焦点面上に所望の形状のビームスポットを形成できる顕微鏡を提供する。
【解決手段】照明光を空間変調する複数の領域を有する変調光学素子38と、変調光学素子38により変調される照明光の光学特性を調整する調整素子37とを備え、前記調整素子は、前記変調光学素子を透過した前記照明光が、前記変調光学素子の前記複数の領域間で、前記照明光の光軸を中心として透過率および位相の少なくとも一つの非対称成分が相殺されるように調整される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、顕微鏡に関するものである。
【背景技術】
【0002】
光学顕微鏡の技術は古く、種々のタイプの顕微鏡が開発されてきた。また、近年では、レーザ技術および電子画像技術をはじめとする周辺技術の進歩により、さらに高機能の顕微鏡システムが開発されている。
【0003】
このような背景の中、複数波長の光で試料を照明して二重共鳴吸収過程を誘導することにより、得られる画像のコントラストの制御のみならず化学分析も可能にした高機能な顕微鏡が提案されている(例えば、特許文献1参照)。
この顕微鏡は、二重共鳴吸収を用いて特定の分子を選択して、特定の光学遷移に起因する吸収および蛍光を観察するものである。この原理について、図19〜図22を参照して説明する。図19は、試料を構成する分子の価電子軌道の電子構造を示すもので、先ず、図19に示す基底状態(S0状態:安定状態)の分子がもつ価電子軌道の電子を波長λの光により励起して、図20に示す第1励起状態(S1状態)とする。次に、別の波長λの光により同様に励起して、図21に示す第2励起状態(S2状態)とする。この励起状態により、分子は蛍光あるいは燐光を発光して、図22に示すように基底状態に戻る。
【0004】
二重共鳴吸収過程を用いた顕微鏡法では、図21の吸収過程や図22の蛍光や燐光の発光を用いて、吸収像や発光像を観察する。この顕微鏡法では、最初にレーザ光等により共鳴波長λの光で図20のように試料を構成する分子をS1状態に励起させるが、この際、単位体積内でのS1状態の分子数は、照射する光の強度が増加するに従って増加する。
【0005】
ここで、線吸収係数は、分子一個当りの吸収断面積と単位体積当たりの分子数との積で与えられるので、図21のような励起過程においては、続いて照射する共鳴波長λに対する線吸収係数は、最初に照射した波長λの光の強度に依存することになる。すなわち、波長λに対する線吸収係数は、波長λの光の強度で制御できることになる。このことは、波長λおよび波長λの2波長の光で試料を照射し、波長λによる透過像を撮影すれば、透過像のコントラストは波長λの光で完全に制御できることを示している。
【0006】
また、図21の励起状態から図22に示す基底状態への蛍光または燐光による脱励起過程が可能である場合、その発光強度はS1状態にある分子数に比例する。したがって、蛍光顕微鏡として利用する場合にも画像コントラストの制御が可能となる。
【0007】
さらに、二重共鳴吸収過程を用いた顕微鏡法は、上記の画像コントラストの制御のみならず、化学分析も可能である。すなわち、図19に示す最外殻価電子軌道は、各々の分子に固有のエネルギー準位を持つので、波長λは分子によって異なることになり、同時に波長λも分子固有のものとなる。
【0008】
ここで、従来の単一波長で試料を照明する場合でも、ある程度特定の分子の吸収像あるいは蛍光像を観察することが可能である。しかし、一般に、いくつかの分子は、吸収帯の波長領域が重複するため、単一波長で試料を照明する場合には、試料の化学組成の正確な同定までは不可能である。
【0009】
これに対し、二重共鳴吸収過程を用いた顕微鏡法では、波長λおよび波長λの2波長により吸収あるいは発光する分子を限定するので、従来法よりも正確な試料の化学組成の同定が可能となる。また、価電子を励起する場合、分子軸に対して特定の電場ベクトルをもつ光のみが強く吸収されるので、波長λおよび波長λの偏光方向を決めて吸収または蛍光像を撮影すれば、同じ分子でも配向方向の同定まで可能となる。
【0010】
また、最近では、二重共鳴吸収過程を用いて回折限界を超える高い空間分解能をもつ蛍光顕微鏡も提案されている(例えば、特許文献2参照)。
【0011】
図23は、分子における二重共鳴吸収過程の概念図で、基底状態S0の分子が、波長λの光で第1励起状態S1に励起され、さらに波長λの光で第2励起状態S2に励起されている様子を示している。なお、図23は、ある種の分子のS2状態からの蛍光が極めて弱いことを示している。
【0012】
図23に示すような光学的性質を持つ分子の場合には、極めて興味深い現象が起きる。図24は、図23と同じく二重共鳴吸収過程の概念図で、横軸のX軸は空間的距離の広がりを表わし、波長λの光を照射した空間領域A1と波長λの光が照射されない空間領域A0とを示している。
【0013】
図24において、空間領域A0では波長λの光の励起によりS1状態の分子が多数生成され、その際に空間領域A0からは波長λで発光する蛍光が見られる。しかし、空間領域A1では、波長λの光を照射したため、第1励起状態S1の分子のほとんどが即座に高位の第2励起状態S2に励起されて、第1励起状態S1の分子は存在しなくなる。このような現象は、幾つかの分子により確認されている。これにより、空間領域A1では、波長λの蛍光は完全になくなり、しかも第2励起状態S2からの蛍光はもともとないので、空間領域A1では完全に蛍光自体が抑制され(蛍光抑制効果)、空間領域A0からのみ蛍光が発することになる。
【0014】
さらに、波長λが蛍光発光帯域と重複するときは、誘導放出過程により分子は第1励起状態S1から基底状態S0の高位の振動準位に強制的に遷移するので、蛍光抑制効果はさらに増強される。言い換えると、波長λの光の照射により第1励起状態S1から発光する蛍光収率は低くなる。したがって、量子準位に強制的に分子を遷移させれば、蛍光抑制効果が発現する。このような物質として、フォトクロミック性の分子や、希土類を含む蛍光体、量子ドットなどがある。
【0015】
このような現象は、顕微鏡の応用分野から考察すると、極めて重要な意味を持っている。すなわち、従来の走査型レーザ顕微鏡等では、レーザ光を集光レンズによりマイクロビームに集光して観察試料上を走査するが、その際のマイクロビームのサイズは、集光レンズの開口数と波長とで決まる回折限界となり、原理的にそれ以上の空間分解能は期待できない。
【0016】
ところが、図24の場合には、波長λと波長λとの2種類の光を、空間的に一部重ね合わせて蛍光領域を抑制するので、例えば波長λの光の照射領域に着目すると、蛍光領域を集光レンズの開口数と波長とで決まる回折限界よりも狭くでき、実質的に空間分解能を向上させることが可能となる。したがって、この原理を利用することで、回折限界を超える二重共鳴吸収過程を利用した超解像顕微鏡、例えば超解像蛍光顕微鏡を実現することが可能となる。
【0017】
例えば、ローダミン6G色素を用いた場合、波長532nmの光(ポンプ光;第1照明光)を照射すると、ローダミン6G分子は、基底状態S0から第1励起状態S1へ励起されて波長560nmにピークを有する蛍光を発光する。この際、波長599nmの光(イレース光;第2照明光)を照射すると、二重共鳴吸収過程が起こって、ローダミン6G分子は蛍光発光がしにくい第2励起状態S2に遷移する。すなわち、これらのポンプ光とイレース光とをローダミン6Gに同時に照射すると蛍光が抑制されることになる。
【0018】
図25は、従来提案されている超解像顕微鏡の要部構成図である。この超解像顕微鏡は、通常のレーザ走査型蛍光顕微鏡を前提としたもので、主に3つの独立したユニット、すなわち、光源ユニット210、スキャンユニット230および顕微鏡ユニット250からなっている。
【0019】
光源ユニット210は、ポンプ光用光源211およびイレース光用光源212を有する。ポンプ光用光源211から射出されるポンプ光は、ダイクロイックプリズム213に入射され、該ダイクロイックプリズム213で反射されて射出される。イレース光用光源212から射出されるイレース光は、変調光学素子215により位相が空間変調されてダイクロイックプリズム213に入射され、該ダイクロイックプリズム213を透過して、ポンプ光と同軸上に合成されて射出される。
【0020】
ここで、ローダミン6G色素で染色された試料を観察する場合には、ポンプ光用光源211は、Nd:YAGレーザを用い、その2倍高調波である波長532nmの光をポンプ光として射出するように構成される。また、イレース光用光源212は、Nd:YAGレーザとラマンシフタとを用い、Nd:YAGレーザの2倍高調波をラマンシフタで波長599nmに変換した光をイレース光として射出するように構成される。
【0021】
変調光学素子215は、イレース光の位相を変調するもので、例えば図26に示すように、瞳面を光軸を中心に動径方向に分割された8領域を有する。各領域は、イレース光の位相差が光軸周りに2πで周回するように、イレース光波長に対してλ/8ずつ位相を異ならせて光学多層膜を形成したり、あるいはガラス基板をエッチングしたりして形成される。この変調光学素子215を通過したイレース光を集光すると、光軸上で電場が相殺された中空状のイレース光が生成される。
【0022】
スキャンユニット230は、光源ユニット210から同軸で射出されるポンプ光およびイレース光を、ハーフプリズム231を通過させた後、2枚のガルバノミラー232および233により2次元方向に揺動走査して、後述の顕微鏡ユニット250に射出させる。また、スキャンユニット230は、顕微鏡ユニット250から入射する蛍光を、往路と逆の経路を辿ってハーフプリズム231で分岐し、その分岐された蛍光を投影レンズ234、ピンホール235、ノッチフィルタ236および237を経て光電子増倍管238で受光するようになっている。
【0023】
図25は、図面を簡略化するため、ガルバノミラー232,233を同一平面内で揺動可能に示している。なお、ノッチフィルタ236および237は、蛍光に混入したポンプ光およびイレース光を除去するものである。また、ピンホール235は、共焦点光学系を成す重要な光学素子で、観察試料内の特定の断層面で発光した蛍光のみを通過させるものである。
【0024】
顕微鏡ユニット250は、いわゆる通常の蛍光顕微鏡で、スキャンユニット230から入射するポンプ光およびイレース光をハーフプリズム251で反射させて、顕微鏡対物レンズ252により少なくとも基底状態を含む3つの電子状態を有する分子を含む観察試料253上に集光させる。また、観察試料253で発光した蛍光は、再び顕微鏡対物レンズ252でコリメートしてハーフプリズム251で反射させることにより、再び、スキャンユニット230に戻すとともに、ハーフプリズム251を通過する蛍光の一部は接眼レンズ254に導いて、蛍光像として目視観察できるようにしている。
【0025】
この超解像顕微鏡によると、観察試料253の集光点上においてイレース光の強度がゼロとなる光軸近傍以外の蛍光が抑制されて、結果的にポンプ光の広がりより狭い領域に存在する蛍光ラベラー分子のみを計測できる。したがって、各計測点の蛍光信号をコンピュータ上で2次元的に配列すれば、回折限界の空間分解能を上回る解像度を有する顕微鏡画像を形成することが可能となる。
【0026】
なお、変調光学素子は、イレース光の偏光を変調して光軸上で電場が相殺された中空状のイレース光が生成されるように構成される場合もある(例えば、非特許文献1参照)。また、変調光学素子は、ポンプ光とイレース光との共通光路に配置される場合もある(例えば、特許文献3参照)。この場合、変調光学素子は、例えば、同心円状に分割された中央部領域と周辺部領域とを有する輪帯状に形成される。中央部領域は、ガラス等の透明な光学基板上に形成された光学多層膜を有し、ポンプ光は反射させ、イレース光は位相をπ反転させて透過させる。周辺部領域は、例えば光学基板からなり、ポンプ光およびイレース光を位相変調することなく透過させる。あるいは、変調光学素子は、光軸を中心に動径方向に分割された複数の領域を有し、各領域はポンプ光に対しては同相で透過させ、イレースに対しては位相分布が2πで周回するラゲール・ガウシアンビームとなるように位相変調する光学多層膜で構成される。
【先行技術文献】
【特許文献】
【0027】
【特許文献1】特開平8−184552号公報
【特許文献2】特開2001−100102号公報
【特許文献3】特開2010−15026号公報
【非特許文献】
【0028】
【非特許文献1】Y.Iketaki,et.al,Rev.Sci.Instrum.75(2004)5131)
【発明の概要】
【発明が解決しようとする課題】
【0029】
ところが、本発明者による実験検討によると、従来の超解像顕微鏡には、さらなる改良点があることが判明した。すなわち、超解像顕微鏡では、焦点面上でイレース光の中空ビームを形成する必要がある。そのため、変調光学素子を用いて焦点または光軸上でイレース光の電場を完全に相殺するようにしている。その際、従来の超解像顕微鏡においては、変調光学素子によりイレース光の位相や偏光を変調しても、透過率のロスは無いことを前提としている。また、顕微鏡光学系の他の領域で発生するイレース光の吸収効果や、変調光学素子自体の製作誤差も無視している。
【0030】
しかしながら、例えば、光学多層膜を有する変調光学素子を用いた場合、設計値通りに位相を変調できたとしても、光学多層膜の透過率は通常100%とならない。その結果、光軸の周りに分割された複数の領域を有する変調光学素子の場合は、領域毎に透過率が異なることになる。また、輪帯状の領域を有する変調光学素子の場合は、中央部領域と周辺部領域とで透過率が異なることになる。しかも、いずれの場合も、顕微鏡光学系の他の領域で発生するイレース光の吸収効果は、補償されない。
【0031】
そのため、このような変調光学素子を通過したイレース光を集光しても、光軸上で電場が完全には相殺されない。その結果、集光したビームスポットの形状は、残留電場によって、光軸対称とならず、歪んだ形状となって、期待する超解像機能が得られなくなることが想定される。具体的には、光軸を含む中央部での蛍光が抑制されて、蛍光信号自体の強度が低下し、S/Nが悪くなる。さらには、蛍光抑制後の蛍光スポットの形状が崩れて、蛍光画像の画質が劣化することが想定される。
【0032】
本発明者は、種々の実験により鋭意検討したところ、上記の残留電場が生じる主たる要因は、変調光学素子によってイレース光をビーム整形する際あるいはイレース光が顕微鏡を通過する際に、干渉や吸収といった実効的な透過率の低下を全く考慮せずに顕微鏡を設計していること、また、変調光学素子自体に製作誤差があること、にあることを見出した。
【0033】
なお、変調光学素子を用いる場合の同様の現象は、上述した二色の光を用いる超解像顕微鏡に限らず、一色の光を用いる顕微鏡、例えば一色の光を変調光学素子により位相変調してマルチスポットを形成する顕微鏡、変調光学素子により中空型の照明光を生成して位相差の微分量を検出する微分干渉顕微鏡、フレネルゾーンプレート等からなる変調光学素子を用いる位相差検出型の軟X線顕微鏡等にも生じることがある。
【0034】
本発明は、上述した点に鑑みてなされたもので、焦点面上に所望の形状のビームスポットを形成できる顕微鏡を提供することを目的とするものである。
【課題を解決するための手段】
【0035】
上記目的を達成する第1の観点に係る顕微鏡の発明は、
照明光を空間変調する複数の領域を有する変調光学素子と、
該変調光学素子により変調される前記照明光の光学特性を調整する調整素子と、
を備えることを特徴とするものである。
【0036】
第2の観点に係る発明は、第1の観点に係る顕微鏡において、
前記調整素子は、前記変調光学素子を透過した前記照明光が、前記変調光学素子の前記複数の領域間で、前記照明光の光軸を中心として透過率および位相の少なくとも一つの非対称成分が相殺されるように調整する、ことを特徴とするものである。
【0037】
第3の観点に係る発明は、第1の観点に係る顕微鏡において、
前記調整素子は、前記変調光学素子により空間変調された前記照明光の瞳面内における前記複数の領域に対応する各領域iの面積をS、当該領域iを通過した光の位相をθ、透過率をT、エネルギー密度をUとするとき、以下の関係式を満たすように調整する、ことを特徴とするものである。
【数1】

【0038】
第4の観点に係る発明は、第1の観点に係る顕微鏡において、
前記調整素子は、前記変調光学素子に一体に形成されている、ことを特徴とするものである。
【0039】
第5の観点に係る発明は、第1の観点に係る顕微鏡において、
前記変調光学素子は、前記複数の領域として、光軸を中心として動径方向に分割された領域を含む、ことを特徴とするものである。
【0040】
第6の観点に係る発明は、第5の観点に係る顕微鏡において、
前記変調光学素子における前記複数の領域は、光軸を挟んで位置する領域aおよび領域bにおける透過率をそれぞれTおよびTとし、面積をそれぞれSおよびSとし、位相をそれぞれθおよびθとするとき、
sinθ+Tsinθ=0
を満たす、ことを特徴とするものである。
【0041】
第7の観点に係る発明は、第6の観点に係る顕微鏡において、
前記領域aおよび前記領域bの面積が等しい、ことを特徴とするものである。
【0042】
第8の観点に係る発明は、第1または5の観点に係る顕微鏡において、
前記変調光学素子は、前記複数の領域として、同心円状に分割された領域を含む、ことを特徴とするものである。
【0043】
第9の観点に係る発明は、第1の観点に係る顕微鏡において、
前記照明光は、少なくとも2以上の励起量子状態をもつ物質を安定状態から第1量子状態に励起して発光させるための第1照明光と、前記物質を更に他の量子状態に遷移させて発光を抑制する第2照明光とを有し、
前記第1照明光と前記第2照明光とを一部重ね合わせて前記物質を含む試料に集光する照明光学系を、さらに備え、
前記照明光学系に前記変調光学素子および前記調整素子が配置されている、ことを特徴とするものである。
【0044】
第10の観点に係る発明は、第9の観点に係る顕微鏡において、
前記変調光学素子は、前記第2照明光を位相変調する、ことを特徴とするものである。
【0045】
第11の観点に係る発明は、第10の観点に係る顕微鏡において、
前記変調光学素子は、前記第1照明光を電場の符号を変えずに透過させるものである、ことを特徴とするものである。
【0046】
第12の観点に係る発明は、第11の観点に係る顕微鏡において、
前記変調光学素子は、光学多層膜を備える、ことを特徴とするものである。
【0047】
第13の観点に係る発明は、第9の観点に係る顕微鏡において、
前記照明光学系は、前記第1照明光の光軸と前記第2照明光の光軸とを空間的に一致させて重ね合わせる、ことを特徴とするものである。
【0048】
第14の観点に係る発明は、第13の観点に係る顕微鏡において、
前記照明光学系は、シングルモードファイバを有し、
前記第1照明光および前記第2照明光は、前記シングルモードファイバを経て前記変調光学素子および前記調整素子に入射される、ことを特徴とするものである。
【0049】
第15の観点に係る発明は、第9の観点に係る顕微鏡において、
前記調整素子は、前記照明光の光束径を調整するアイリスからなる、ことを特徴とするものである。
【0050】
第16の観点に係る発明は、第15の観点に係る顕微鏡において、
前記アイリスは、入射する照明光の光軸に対して直交する方向に移動可能である、ことを特徴とするものである。
【0051】
第17の観点に係る発明は、第9乃至16のいずれかの観点に係る顕微鏡において、
少なくとも3種類以上の波長の照明光を発生可能な複数の照明光源を有し、
前記第1照明光および前記第2照明光は、前記複数の照明光源から同時に発生される、ことを特徴とするものである。
【0052】
前記照明光学系からの前記第1照明光および前記第2照明光の照射により前記試料から発生する光を検出する光検出器と、
該光検出器の入射面側で前記対物レンズの焦点位置と共役な位置に配置された開口が可変の共焦点ピンホールと、
該共焦点ピンホールの前記開口を可変する駆動部と、
前記複数の照明光源を制御して前記第1照明光および前記第2照明光を同時に発生させるとともに、前記第1照明光および前記第2照明光に応じて、前記共焦点ピンホールの前記開口が下式を満たすように、前記駆動部を介して前記開口を制御する制御部と、
を備えることを特徴とする請求項17に記載の顕微鏡。
【数2】

NA:対物レンズの開口数
M:対物側の集光像に対する光検出器側の倍率
lp:第1照明光波長
le:第2照明光波長
sdip:蛍光抑制断面積
Ce0:第2照明光のピーク強度
ee:第2照明光のフォトンフラックス
【発明の効果】
【0053】
本発明によれば、変調光学素子により変調される照明光の光学特性を調整素子により調整するので、焦点面上に所望の形状のビームスポットを形成することが可能となる。
【図面の簡単な説明】
【0054】
【図1】変調光学素子および調整素子の一例を示す図である。
【図2】変調光学素子の他の例を示す図である。
【図3】軟X線用の変調光学素子と調整素子との一例を示す図である。
【図4】本発明の第1実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。
【図5】図4の超解像顕微鏡に使用可能な変調光学素子の他の三つの例を示す図である。
【図6】図5の変調光学素子を使用した場合に焦点を含む前後において形成されるビームの強度分布を示す図である。
【図7】本発明の第2実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。
【図8】本発明の第3実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。
【図9】第3実施の形態で使用可能なバンドパスフィルタの一例を説明するための図である。
【図10】第3実施の形態で使用可能なバンドパスフィルタの他の例を説明するための図である。
【図11】第3実施の形態の変形例を示す部分構成図である。
【図12】図11に示した回転フィルタを説明するための図である。
【図13】本発明の第4実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。
【図14】共焦点顕微鏡の基本的構成を示す模式図である。
【図15】各種顕微鏡の点像分布関数を比較して示す図である。
【図16】各種顕微鏡の回折限界サイズのコントラスト伝達関数を説明するための図である。
【図17】本発明による変調光学素子の調整態様の一変形例を説明するための図である。
【図18】本発明による変調光学素子の調整態様の他の変形例を説明するための図である。
【図19】試料を構成する分子の価電子軌道の電子構造を示す概念図である。
【図20】図19に示す分子の第1励起状態を示す概念図である。
【図21】図19に示す分子の第2励起状態を示す概念図である。
【図22】図19に示す分子が第2励起状態から基底状態に戻る状態を概念的に示す図である。
【図23】分子における二重共鳴吸収過程を説明するための概念図である。
【図24】分子における二重共鳴吸収過程を説明するための概念図である。
【図25】従来の超解像顕微鏡の要部構成図である。
【図26】図25に示す位相板の構成を示す拡大平面図である。
【発明を実施するための形態】
【0055】
(本発明の概要)
先ず、本発明の概要について、2色光を用いた物質からの発光を抑制して超解像を実現する発光抑制型の超解像顕微鏡を例にとって説明する。
【0056】
本発明の一実施の形態においては、超解像顕微鏡のイレース光の照明光学系において、変調光学素子により瞳面内で変調されたイレース光の強度分布を均一に保つようにイレース光の光学特性を調整する。
【0057】
その第1の効果的対策として、イレース光の強度分布を補正する振幅変調素子を設ける。図1は、変調光学素子および調整素子の一例を示す図である。この変調光学素子1は、イレース光に対して位相(位相分布)が光軸周りに2πで周回するように、動径方向に分割(図1では8分割)された複数の光学多層膜領域を有する。変調光学素子1は、イレース光の光路、あるいはポンプ光とイレース光との共通光路に配置され、これによりイレース光の位相または偏光を変調する。
【0058】
かかる変調光学素子1を用いる場合は、例えば、変調光学素子1の入射面側または射出面側(図1では入射面側)に調整素子である透過率補償プレート2を配置する。透過率補償プレート2には、光軸を中心とする動径方向に分割(図1では6分割)されたイレース光の吸収層からなる複数の透過率補償領域が形成される。なお、この透過率補償領域を構成する吸収層は、単層または多層膜で形成される。
【0059】
これにより、変調光学素子1から後段の光学素子(図示せず)に入射されるイレース光の瞳面内の振幅が均一になるように、変調光学素子1の各光学多層膜領域の透過率を、透過率補償プレート2の対応する透過率補償領域により制御する。あるいは、変調光学素子1の各光学多層膜領域は、一般に層数が多い程、透過率が低くなるので、層数に応じて、変調光学素子の基板に、透過率を均一にする吸収層を各光学多層膜領域に同時にコートする。この場合、透過率補償プレート2は、変調光学素子1に一体化されたものとなる。
【0060】
第2の効果的対策として、変調光学素子により変調する位相、振幅、変調領域の面積を総合的に考慮して、瞳面内を通過したイレース光が焦点に集光した際に、干渉により電場を相殺する。すなわち、変調光学素子がイレース光の瞳面を複数n個の領域に分割する場合、各領域iの面積をS、位相をθ、透過率をT、エネルギー密度をUとすると、下記の関係式を満たすようにする。
【0061】
【数3】

【0062】
上式から明らかなように、変調光学素子の各領域iは、透過率T、面積Sおよび位相θが設計パラメータとなっている。したがって、従来の超解像顕微鏡におけるように、変調光学素子の透過率が1であることを前提とする場合と比較して、顕微鏡設計の自由度が広くなる。これにより、例えば、変調光学素子の光学多層膜で透過率が低下する場合は、その低下分を当該領域の面積で調整でき、また、透過率が低下する場合は当該領域の位相変化量で補償することが可能となる。
【0063】
この対策は、特に、図2に示すような変調光学素子10に有効である。図2に示す変調光学素子10は、同心円状に分割されて形成された輪帯状の中央部領域11と周辺部領域12とを有し、ポンプ光とイレース光との共通光路に配置される。中央部領域11は、ガラス等の透明な光学基板上に形成された光学多層膜で構成され、波長λのポンプ光は反射させ、波長λのイレース光は位相をπ反転させて透過させる。周辺部領域12は、例えば光学基板からなり、ポンプ光およびイレース光を位相変調することなく透過させる。
【0064】
この変調光学素子10の場合は、下式を満たすようにする。これにより、変調光学素子10を通過したコヒーレントなイレース光を重ね合わせたときに、焦点においてイレース光の電場強度をゼロとすることができる。なお、下式において、T、S、θは、それぞれ中央部領域11の透過率、面積および位相を示し、T、S、θは、それぞれ周辺部領域12の透過率、面積および位相を示す。
【0065】
sinθ+Tsinθ=0 ・・・(2)
【0066】
また、図1に示した変調光学素子1のように、光軸周りに複数分割された光学多層膜領域を有する場合においても、光軸を挟んで位置する光学多層膜領域の透過率、面積および位相をそれぞれT、S、θおよびT、S、θとして、上記式(2)を満たすようにする。なお、図1に示した変調光学素子1において、光軸を挟んで位置する光学多層膜領域の面積が等しい場合は、下記の式(3)を満たすようにする。これにより、同様に、焦点においてイレース光の電場強度をゼロとすることができる。
【0067】
sinθ+Tsinθ=0 ・・・(3)
【0068】
このように、変調光学素子の設計パラメータが多くなることにより、多様でフレキシブルな設計が可能となり、実際の現場における製作誤差の許容範囲を広くできる。その結果、例えば、光学多層膜の材質の選定範囲を広くすることができる。
【0069】
また、2色光を用いた発光抑制型の超解像顕微鏡の場合は、一般に2色の照明光の光軸調整が極めて難しい。すなわち、この場合は、2色の照明光を完全に同軸に一致させ、しかも収差無く同じ焦点に結像するように、照明光学系をアライメントする必要がある。その解決策として、例えば、ポンプ光とイレース光とをシングルモードファイバにより予め同軸にして変調光学素子に同時に入射させ、該変調光学素子によりイレース光のみを中空状にビーム整形されるように位相変調し、ポンプ光については、少なくとも瞳面内で電場の符号が同じ、つまり符号を変えずに透過させて、通常のガウシアン形状で集光されるような位相分布とするのが有効である。
【0070】
このようにすれば、変調光学素子を経たポンプ光およびイレース光を集光させることにより、図25に示したように、イレース光をビーム整形した後、ポンプ光と光軸調整して集光させる場合と比較して、超解像機能が発現する結像条件を容易に実現することが可能となる。すなわち、図25の場合は、イレース光をビーム整形後、ポンプ光と同時に調整するため、光軸合わせのためのミラー光学系の調整に高度な技術が要求され、しかも調整後の安定も良くない。これに対し、上記のようにポンプ光とイレース光とをシングルモードファイバを用いて予め同軸にして、変調光学素子および集光光学系を経て集光させるようにすれば、ポンプ光とイレース光とを簡単に同軸にでき、しかも軸ずれなく安定して集光させることが可能となる。
【0071】
また、ポンプ光とイレース光とを同軸にして変調光学素子に同時に入射させる場合、変調光学素子は、光学多層膜を用いて、例えば、図1あるいは図2に示したように作製することが可能である。その際、各領域の透過率が異なる場合は、式(1)が極めて有効となる。すなわち、各領域の透過率の変動を位相差または面積で間単に補償することが可能となる。したがって、本発明によると、変調光学素子を用いる顕微鏡の実用化にあたって、極めて広い融通性が得られ、焦点面上に所望の形状のビームスポットを容易に形成することが可能となる。
【0072】
以上、2色光を用いた発光抑制型の超解像顕微鏡に本発明を適用した場合について説明したが、本発明は単色のコヒーレント光を使用する顕微鏡にも有効に適用することができる。例えば、一色の光を変調光学素子により位相変調してマルチスポットを形成する顕微鏡に適用して、所望の形状のマルチスポットを形成することができる。また、中空型の照明光を生成して位相差の微分量を検出する微分干渉顕微鏡や、位相差検出型の軟X線顕微鏡(例えば、N. Borkor, Opt. Express 17(2009)5533参照)等に適用して、所望の形状のスポットを形成することができる。
【0073】
特に、後者の軟X線顕微鏡の場合は、例えば、図3に示すように、スパイラル型のフレネルゾーンプレート20からなる変調光学素子と、図1に示したような光軸回りに複数分割された透過率補償プレート21からなる吸収フィルタとを組み合わせることにより、フレネルゾーンプレート20の軟X線の透過率を補償して、所望の形状の軟X線スポットを形成することができる。
【0074】
以下、本発明の実施の形態について、図を参照して説明する。
【0075】
(第1実施の形態)
図4は、本発明の第1実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。この超解像顕微鏡は、2色光を用いる発光抑制型のもので、ポンプ光光源31と、イレース光光源32とを有する。ポンプ光光源31は、例えばNd:YAGレーザを備え、その2倍高調波である波長532nmの光をポンプ光として射出する。また、イレース光光源32は、例えばクリプトンレーザを備え、その発振波長647nmの光をイレース光として射出する。
【0076】
ポンプ光光源31からのポンプ光は、必要に応じてAOM(Acousto-Optic Modulator)33で強度変調された後、反射ミラー34で反射され、さらにダイクロイックミラー35を透過する。また、イレース光光源32からのイレース光は、同様に、必要に応じてAOM36で強度変調された後、ダイクロイックミラー35で、ポンプ光と同軸に反射されて、ポンプ光とコンバインされる。
【0077】
ダイクロイックミラー35によりコンバインされたポンプ光およびイレース光は、調整素子であるアイリス37を経て変調光学素子38に入射される。アイリス37は、コンバインされたポンプ光およびイレース光の光束径を調整可能に構成される。また、アイリス37は、必要に応じて、光軸と直交する面内で変位可能に構成される。これにより、コンバインされたポンプ光およびイレース光の光軸を偏心(光軸シフト)させる。
【0078】
変調光学素子38は、例えば、図2に示したように、輪帯状に形成された中央部領域と周辺部領域とを有して構成される。この場合、変調光学素子38の中央部領域は、例えば、光学基板上に下表に示す光学多層膜が形成されて構成される。なお、下表において、第1層は最下層、第10層は最上層を示す。また、この中央部領域の直径は、均一なイレース光が入射した場合、式(1)からイレース光の瞳径の1/21/2となる。これにより、波長647nmのイレース光に対して、その位相を反転して、試料42の焦点面にドーナッツ状のスポットパターンを形成することが可能となる。
【0079】
【表1】

【0080】
変調光学素子38を通過したポンプ光およびイレース光は、ビームスプリッタ39で反射された後、顕微鏡対物レンズ40により、試料ステージ41に保持された試料42に集光される。そして、試料42から得られる光は、顕微鏡対物レンズ40により捕集された後、ビームスプリッタ39を透過して分光器43で分光されて、所要の波長成分の信号光(蛍光)が、例えば光電子増倍管からなる光検出器44で受光される。なお、試料42は、試料ステージ41の移動により空間走査され、これにより光検出器44から得られる信号に基づいて試料42の蛍光画像が生成される。
【0081】
かかる構成において、変調光学素子38は、光学多層膜の製膜時において、光学多層膜の特性が設計値と異なり、位相変調がπと異なったり、透過率も100%を大きく下回ったりする場合がある。また、一般に、ポンプ光やイレース光のレーザ光は、面内強度が均一でなく、光軸対称のガウスビームとなっている。そのため、試料42に集光されるイレース光のスポット形状が、光軸対称とならず、歪んだ形状となって、期待する超解像機能が得られず、蛍光画像の画質が劣化することが想定される。
【0082】
本実施の形態に係る超解像顕微鏡によると、変調光学素子38の入射側に調整素子としてアイリス37を有している。したがって、このアイリス37によりポンプ光およびイレース光の光束径や必要に応じて光軸(偏心)を調整する簡単な操作で、イレース光に対して、変調光学素子38の光学多層膜を有する中央部領域の面積と、それ以外の周辺部領域の透過面積との比を自在に調整することができる。これにより、式(2)を満たす条件を見出すことができるので、変調光学素子38の作製誤差を簡単に補償することが可能となり、変調光学素子38により変調されるイレース光の光学特性が調整される。
【0083】
また、ポンプ光は、イレース光と同軸に合成され、電場の極性が反転されることなく、通常のガウス状に試料42に集光される。したがって、顕微鏡対物レンズ40の色収差が補償されていれば、ポンプ光はイレース光のドーナッツ状のスポットパターンの中央部に軸ずれなく集光され、超解像機能の発現条件が容易に実現される。これにより、従来、イレース光のビーム整形には高精度な精密加工精度と調整技術を要求する変調光学素子が不可欠であると信じられていたが、本実施の形態によれば、変調光学素子38をフレキシブルな光学設計で作製でき、しかも簡易な光学調整で超解像機能を発現することが可能となる。
【0084】
なお、変調光学素子38は、図2に示した輪帯型の構成に限らず、図1に示したような光軸周りに位相が段階的に変化する変調光学素子を用いることもできる。また、図5(a)〜(c)に示すような変調光学素子50を用いることも可能である。
【0085】
図5(a)に示す変調光学素子50は、図1に示した変調光学素子1と図2に示した変調光学素子10とを組み合わせたハイブリッド型で、輪帯状に形成された中央部領域51、中間部領域52および外周部領域53を有する。中央部領域51および中間部領域52は、図2に示した変調光学素子10の中央部領域11および周辺部領域12と同様に構成される。外周部領域53は、図1に示した変調光学素子1と同様に、イレース光に対して位相差が2πで周回するように動径方向に分割(図5(a)では8分割)された複数の光学多層膜領域を有して構成される。
【0086】
また、変調光学素子50は、好適には、中央部領域51および中間部領域52を透過するイレース光と、外周部領域53を透過するイレース光との干渉を避けるため、それぞれの領域を透過するイレース光の偏光を異ならせるように構成される。例えば、中央部領域51および中間部領域52は、透過するイレース光が右回りの円偏光、外周部領域53は、透過するイレース光が左回りの円偏光となるように構成される。
【0087】
かかる変調光学素子50を透過したイレース光を顕微鏡対物レンズ40により集光すれば、焦点を含む前後において、図6に示すような等方的な3次元ダークホールを有する強度分布のビーム形状を形成することが可能となる。なお、図6において、z方向は光軸方向を示し、x方向は光軸と直交する方向を示す。したがって、共焦点光学系と組み合わせることにより、試料42の深さ方向の分解能を得ることが可能となる。
【0088】
図5(b)および(c)に示す変調光学素子50は、それぞれ輪帯2重構造を有するものである。図5(b),(c)において、内側輪帯領域および外側輪帯領域は、それぞれイレース光の位相分布を光軸の周りで2π変化させるが、位相シフトの回転方向が光軸に関して互いに反対方向となっている。なお、図5(b)は、内側輪帯領域と外側輪帯領域とをそれぞれ動径方向に8分割して位相シフト量を量子化した構成を例示しており、図5(c)は、内側輪帯領域と外側輪帯領域とのそれぞれの位相シフト量を光軸の周りで滑らかに連続的に変化させる構成を例示している。
【0089】
図5(b),(c)に示した変調光学素子50を用いた場合、通過したイレース光の振幅強度を動径方向に対して足し合わせると電場が相殺される。したがって、図2に示したダークホール型の変調光学素子10と等価の機能を有するので、この変調光学素子50を通過したイレース光を顕微鏡対物レンズで集光させれば、焦点内のみならず光軸面内おいても超微細な光の当らない干渉領域を生成することができる。なお、各輪帯領域は、図5(c)に示したように、位相が滑らかに連続的に変化するように構成するのが望ましいが、各輪帯領域を例えば光学薄膜をコートして形成する場合、実際の製造工程を考慮すると、図5(b)に示したように、8段階に量子化して構成する場合の方が簡単に製造することが可能となる。また、図2に示し変調光学素子10と同様に、位相変調を与える手段として光学多層膜を用いれば、ポンプ光に対しては全く位相変調を与えず、イレース光のみを位相変調してダークホールを持つようにビーム整形することが可能となる。
【0090】
(第2実施の形態)
図7は、本発明の第2実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。なお、図7において、図4に示した構成要素と同一作用をなす構成要素には、同一参照符号を付して、その説明を省略する。この超解像顕微鏡は、図4に示した超解像顕微鏡において、ダイクロイックミラー35により同軸にコンバインされたポンプ光およびイレース光を、集光レンズ60により集光してシングルモードファイバ61に入射させる。シングルモードファイバ61から射出されるポンプ光およびイレース光は、コリメータレンズ62により平行光に変換されて、アイリス37を経て変調光学素子38に入射される。
【0091】
また、変調光学素子38を透過したポンプ光およびイレース光は、ガルバノスキャンユニット63を経てビームスプリッタ39に入射され、該ビームスプリッタ39で反射された後、瞳投影レンズ64を経て顕微鏡対物レンズ40により、試料ステージ41に保持された試料42に集光される。これにより、試料42は、ポンプ光およびイレース光によって2次元走査される。そして、試料42から得られる光は、顕微鏡対物レンズ40により捕集された後、瞳投影レンズ64およびビームスプリッタ39を透過して分光器43で分光されて、所要の波長成分の信号光(蛍光)が光検出器44で受光され、その出力に基づいて試料42の蛍光画像が生成される。
【0092】
本実施の形態に係る超解像顕微鏡によると、第1実施の形態の場合と同様に、アイリス37によりポンプ光およびイレース光の光束径や必要に応じて光軸(偏心)を調整する簡単な操作で、式(2)を満たす条件を見出すことが可能となる。つまり、イレース光に対して、変調光学素子38の光学多層膜を有する中央部領域の面積と、それ以外の周辺部領域の透過面積との比を自在に調整することができる。これにより、変調光学素子38の作製誤差を簡単に補償して、超解像機能を発現することが可能となる。したがって、変調光学素子38をフレキシブルな光学設計で容易に作製することが可能となる。
【0093】
また、ポンプ光およびイレース光は、共通のシングルモードファイバ61に導入され、コリメータレンズ62により平行光として取り出されるので、完全球面波のポンプ光およびイレース光を変調光学素子38に入射させることができる。したがって、試料42の焦点面に、イレース光のより正確なドーナッツ状のスポットパターンを形成することが可能となる。
【0094】
さらに、ポンプ光およびイレース光が、ガルバノスキャンユニット63により2次元走査されるので、試料ステージ41を移動して試料42を二次元走査する図4の場合と比較して、計測精度を向上できるとともに、計測時間を短縮することが可能となる。しかも、ガルバノスキャンユニット63により2次元走査されるポンプ光およびイレース光は、瞳投影レンズ64を経て顕微鏡対物レンズ40により試料42に集光されるので、焦点面で収差なく集光させることが可能となる。
【0095】
(第3実施の形態)
図8は、本発明の第3実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。なお、図8において、図7に示した構成要素と同一作用をなす構成要素には、同一参照符号を付して、その説明を省略する。本実施の形態に係る超解像顕微鏡は、多様な色素分子に対応できるように構成されたものである。すなわち、特に生物分野においては、様々な観測対象が多様な色素で染色されて、生命現象の解明が行われている。
【0096】
ここで、蛍光抑制は、多くの分子で観測されるものの、励起波長および蛍光波長は大きく異なっている。一般に、蛍光抑制効果は、分子が第1励起状態(S1状態)へ励起されない蛍光波長帯域よりも長波長のイレース光を照射すると誘導できるが、その発現程度はイレース光の波長に依存ずる。また、より少ない照射強度でS1状態へ励起するためには、ポンプ光の波長も最適化する必要がある。
【0097】
具体的には、染色する色素に応じて効率的に蛍光抑制効果を誘導できるポンプ光波長とイレース光波長とを選定し、かつ、これらポンプ光とイレース光とが検出器に混入することなく、高い感度で蛍光を検出できるような柔軟性のある顕微鏡システムの出現が望まれている。より詳しくは、紫外領域から近赤外領域において発光する様々な蛍光色素に対応できような汎用性の高い顕微鏡が必要とされている。
【0098】
本実施の形態に係る超解像顕微鏡は、上記の要望に応えるもので、発振波長の異なる3個以上のレーザ光源を有する。図8は、発振波長の異なる5個のレーザ光源71〜75を有する場合を例示している。レーザ光源71は、発振波長λが例えば405nmで、蛍光タンパクCFP(Cyan Fluorescence Protein)等の色素を励起できる。レーザ光源72は、発振波長λが例えば480nmで、Alexa488やFITC(Fluorescein isothiocianate)等の代表的な汎用色素を励起できる。レーザ光源73は、発振波長λが例えば532nmで、Alexa532やナイルレット等の色素を励起できる。レーザ光源74は、発振波長λが例えば639nmで、テキサスレット等の色素を励起できる。レーザ光源75は、発振波長λが例えば730nmで、シアニン系のCy7等の近赤外対応の色素を励起できる。
【0099】
レーザ光源71以外のレーザ光源72〜75は、イレース光光源としても使用される。すなわち、一般に蛍光抑制効果は、上術したように色素を蛍光励起しないような、より長波長のイレース光で誘導できる。したがって、例えば、レーザ光源71をポンプ光光源として用いる場合は、使用する蛍光色素に応じてレーザ光源72〜75のいずれかをイレース光光源として利用できる。また、レーザ光源73をポンプ光光源として用いる場合は、レーザ光源74またはレーザ光源75をイレース光光源として用いることができる。
【0100】
本発明者による検討によると、色素の蛍光帯域とポンプ光およびイレース光の波長との関係は次のようになる。すなわち、蛍光帯域は、ポンプ光とイレース光との中間波長帯に位置する。したがって、光検出器の直前に1枚または複数枚の光学フィルタを設ければ、具体的には、ポンプ光とイレース光との中間波長帯域で透過率を有するバンドパスフィルタや、ポンプ光波長とイレース光波長とをブロックする2枚のノッチフィルタを設置すれば、ポンプ光およびイレース光の散乱光から蛍光を分離して検出することができる。
【0101】
本実施の形態に係る超解像顕微鏡は、上述したように5種類の波長405nm(λ)、480nm(λ)、532nm(λ)、639nm(λ)、730nm(λ)で発振可能なレーザ光源71〜75を有している。したがって、原理的には、405nm-480nm、405nm-532nm、405nm‐639nm、405nm-730nm、480nm-532nm、480nm‐639nm、480nm‐730nm、532nm‐639nm、532nm‐730nm、639nm‐730nmの10種類の組み合わせ波長で超解像計測が可能となる。
【0102】
しかし、一般に、超解像顕微鏡では、ポンプ光とイレース光とが光軸方向でずれて結像すると、言い換えると軸上の色収差を有すると、大きな解像度の向上は期待できない。したがって、色収差の出にくい隣接した波長をもつ組み合わせで画像計測を行うことが好ましい。この場合、蛍光の検出に用いるフィルタとしては、図9に示すような、隣接する発振波長間λ‐λ,λ‐λ,λ‐λ,λ‐λで透過率を有するバンドパスフィルタBPF1〜BPF4を用意し、光源の組み合わせ応じて、随時、バンドパスフィルタを切り替えられるようにするのが好ましい。
【0103】
なお、顕微鏡光学系の色収差が無視できれば、隣接しない発振波長の組み合わせ、例えば発振波長λとλとの組合せや、λとλとの組合せも可能である。この場合は、図10に示すように発振波長間λ‐λやλ‐λで透過率を有するバンドパスフィルタBPF5やBPF6を用意して、光源の組み合わせ応じて、随時、バンドパスフィルタを切り替えられるようにする。さらには、イレース光またはポンプ光照射により試料からの副次光が発生しない場合は、光源の発振波長のみをブロックできるノッチフィルタを複数枚、検出光学系の光路に挿入してもよい。
【0104】
図8において、レーザ光源71から射出されるレーザ光は、ビームスプリッタ80で2光束に分離される。そして、ビームスプリッタ80を透過する一方の光束は、反射ミラー81で反射された後、ビームコンバイナ82,83,84および85を順次透過して、回転型NDフィルタ86に入射され、ビームスプリッタ80で反射される他方の光束は、ビームスプリッタ87,88,89および90を順次透過して、回転型NDフィルタ91に入射される。
【0105】
レーザ光源72から射出されるレーザ光は、ビームスプリッタ87で2光束に分離される。そして、ビームスプリッタ87を透過する一方の光束は、ビームコンバイナ82で反射されて、反射ミラー81からのレーザ光の光路と同軸に合成された後、ビームコンバイナ83,84および85を順次透過して、回転型NDフィルタ86に入射され、ビームスプリッタ87で反射される他方の光束は、ビームスプリッタ80からのレーザ光の光路と同軸に合成された後、ビームスプリッタ88,89および90を順次透過して、回転型NDフィルタ91に入射される。
【0106】
レーザ光源73から射出されるレーザ光は、ビームスプリッタ88で2光束に分離される。そして、ビームスプリッタ88を透過する一方の光束は、ビームコンバイナ83で反射されて、ビームコンバイナ82からのレーザ光の光路と同軸に合成された後、ビームコンバイナ84および85を順次透過して、回転型NDフィルタ86に入射され、ビームスプリッタ88で反射される他方の光束は、ビームスプリッタ87からのレーザ光の光路と同軸に合成された後、ビームスプリッタ89および90を順次透過して、回転型NDフィルタ91に入射される。
【0107】
レーザ光源74から射出されるレーザ光は、ビームスプリッタ89で2光束に分離される。そして、ビームスプリッタ89を透過する一方の光束は、ビームコンバイナ84で反射されて、ビームコンバイナ83からのレーザ光の光路と同軸に合成された後、ビームコンバイナ85を透過して、回転型NDフィルタ86に入射され、ビームスプリッタ89で反射される他方の光束は、ビームスプリッタ88からのレーザ光の光路と同軸に合成された後、ビームスプリッタ90を順次透過して、回転型NDフィルタ91に入射される。
【0108】
レーザ光源75から射出されるレーザ光は、ビームスプリッタ90で2光束に分離される。そして、ビームスプリッタ90を透過する一方の光束は、ビームコンバイナ85で反射されて、ビームコンバイナ84からのレーザ光の光路と同軸に合成されて、回転型NDフィルタ86に入射され、ビームスプリッタ90で反射される他方の光束は、ビームスプリッタ89からのレーザ光の光路と同軸に合成されて、回転型NDフィルタ91に入射される。
【0109】
回転型NDフィルタ86,91は、それぞれ同一円周上に複数配置された透過率の異なるNDフィルタを有し、それぞれ所望の透過率のNDフィルタを対応する光軸上に配置することにより、所望の強度の透過光が得られるように構成されている。回転型NDフィルタ86を透過した光は、音響光学波長可変フィルタ92に入射され、回転型NDフィルタ91を透過した光は、音響光学波長可変フィルタ93に入射される。
【0110】
音響光学波長可変フィルタ92,93は、励振される弾性表面波の周波数の制御により所望の波長の光を選択する。これにより音響光学波長可変フィルタ92から擬似パルス化された所望の波長のポンプ光を得、音響光学波長可変フィルタ93から擬似パルス化された所望の波長のイレース光を得る。
【0111】
音響光学波長可変フィルタ92から得られるポンプ光は、反射ミラー34で反射され、さらにビームコンバイナ94を透過して、集光レンズ60を経てシングルモードファイバ61に入射される。また、音響光学波長可変フィルタ93から得られるイレース光は、ビームコンバイナ94で反射されてポンプ光の光軸と同軸上に合成されて、集光レンズ60を経てシングルモードファイバ61に入射される。
【0112】
つまり、本実施の形態に係る超解像顕微鏡では、レーザ光源71〜75のうち、所望のポンプ光波長およびイレース光波長に対応する隣接する発振波長の2つのレーザ光源を選択して駆動する。そして、これら2つのレーザ光源から射出されたレーザ光を、回転型NDフィルタ86および音響光学波長可変フィルタ92を透過させるとともに、回転型NDフィルタ91および音響光学波長可変フィルタ93を透過させる。これにより、音響光学波長可変フィルタ92および音響光学波長可変フィルタ93から、それぞれ蛍光抑制効果が効果的に発現するように擬似パルス化されたポンプ光およびイレース光を得る。そして、これらポンプ光およびイレース光をビームコンバイナ94で同軸に合成して、集光レンズ60を経てシングルモードファイバ61に入射させる。
【0113】
シングルモードファイバ61から射出されるポンプ光およびイレース光は、コリメータレンズ62により平行光に変換された後、アイリス37を経て変調光学素子38に入射される。そして、変調光学素子38を透過したポンプ光およびイレース光は、ビームスプリッタ39を透過した後、ガルバノスキャンユニット63および瞳投影レンズ64を経て顕微鏡対物レンズ40により、試料ステージ41に保持された試料42に集光される。これにより、試料42は、ポンプ光およびイレース光によって2次元走査される。
【0114】
また、試料42から得られる光は、顕微鏡対物レンズ40により捕集された後、瞳投影レンズ64およびガルバノスキャンユニット63を経てビームスプリッタ39で反射される。ビームスプリッタ39で反射された試料42からの光は、集光レンズ95、共焦点ピンホール96およびフィルタ部97を経て、所要の波長成分の信号光(蛍光)が光検出器44で受光され、その出力に基づいて試料42の蛍光画像が生成される。
【0115】
ここで、フィルタ部97は、図9に示したように、5種類のレーザ光源71〜75の隣り合う発振波長間で透過率を有する4枚の独立したバンドパスフィルタBPF1〜BPF4を直線状に保持しており、光検出器44の光路に対してスライド可能に配置される。そして、所望のバンドパスフィルタ、すなわち、選択された2種類のレーザ光源の発振波長間に透過率を有するバンドパスフィルタが、光検出器44の光路に挿入される。なお、フィルタ部97は、回転フィルタにバンドパスフィルタBPF1〜BPF4を保持し、回転フィルタを回転させて所望のバンドパスフィルタを光検出器44の光路に挿入するように構成してもよい。
【0116】
本実施の形態による超解像顕微鏡によれば、第2実施の形態と同様の効果が得られる。また、発振波長の異なる複数のレーザ光源71〜75および隣り合う発振波長間に透過率を有す複数のバンドパスフィルタBPF1〜BPF4を有する。したがって、染色した色素に応じて効率的に蛍光抑制効果を誘導できるポンプ光およびイレース光の波長を容易に選定でき、かつ、これらポンプ光およびイレース光の光検出器44への混入を防止して、試料42からの蛍光を高感度で検出できる柔軟性のある顕微鏡システムを実現することができる。さらに、光検出器44の入射側に共焦点ピンホール96を配置したので、散乱光等をさらにカットしてS/Nの向上を図ることができるとともに、試料42の深さ方向に対する空間分解能を得ることができる。
【0117】
なお、図8に示した構成において、色素分子が蛍光タンパクなどストークシフトの大きい分子の場合、すなわち、ポンプ光の吸収波長に対して蛍光波長が著しく長波長側にシフトする分子である場合は、例えばレーザ光源71とレーザ光源73などの発振波長が離れたレーザ光源の組み合わせも可能である。この場合は、フィルタ部97に、発振波長の組合せに応じて、図10に示したような透過率特性を有するBPFを保持して、対応するBPFを光検出器44の入射光路に挿入するように構成する。
【0118】
また、図8に示す構成において、ビームスプリッタ39と集光レンズ95との間の光検出器44の入射光路中に、図4または図7に示した実施の形態と同様に分光器を設け、該分光器で所望の波長の信号光(蛍光)を分光させて、集光レンズ95、共焦点ピンホール96およびフィルタ部97を経て光検出器44で受光するように構成することもできる。このように構成すれば、信号光のS/Nをより向上でき、信号光をより高感度で検出することができる。
【0119】
さらに、図8の音響光学波長可変フィルタ92および93に代えて、図11に部分構成図を示すように、回転フィルタ101,102およびAOM33,36を設けて、それぞれ蛍光抑制効果が効果的に発現するように擬似パルス化されたポンプ光およびイレース光を得ることもできる。ここで、回転フィルタ101,102は、それぞれ図12(a)に示すように、レーザ光源71〜75の各々に対応するレーザラインフィルタLF1〜LF5を保持し、回転フィルタ101,102を回転させて、選択されたレーザ光源に対応する所望のレーザラインフィルタを光路に挿入するように構成する。なお、レーザラインフィルタLF1〜LF5は、図12(b)に示すように、レーザ光源71〜75の所定の発振波長λ,λ,λ,λ,λの光を効率良く透過する狭帯域の透過特性を有する。
【0120】
そして、回転型NDフィルタ86を経た2色のレーザ光から、回転フィルタ101により所望の波長のレーザ光を得、該レーザ光の強度をAOM33で変調して、擬似パルス化された所望のポンプ光を得る。同様に、回転型NDフィルタ91を透過した2色のレーザ光から、回転フィルタ102により所望の波長のレーザ光を得、該レーザ光の強度をAOM36で変調して、擬似パルス化された所望のイレース光を得る。その他の構成は、図8と同様である。
【0121】
(第4実施の形態)
図13は、本発明の第4実施の形態に係る超解像顕微鏡の要部の概略構成を示す図である。本実施の形態に係る超解像顕微鏡は、図11に示した構成において、図8に示した光検出器44側の共焦点ピンホール96が、図13に示すように、X方向およびY方向のスリット幅が可変の矩形状の開口に形成されて、それぞれのスリット幅がPZT等からなる対応する駆動部111x,111yにより開口の大きさが調整可能に構成されている。また、レーザ光源71〜75および駆動部111x,111yの制御部112を備え、これによりレーザ光源71〜75の駆動および組み合わせ、つまり使用するポンプ光およびイレース光の発生が制御されるとともに、発生させるポンプ光およびイレース光に応じて、共焦点ピンホール96の開口(この場合、内接する円の直径)aが、次式(4)を満たすように、駆動部111x,111yを介して制御される。
【0122】
【数4】

【0123】
つまり、本実施の形態においては、共焦点ピンホール96の開口aが、レイリーの基準による回折限界未満で、光検出器44(図8参照)側の点像分布関数の半値幅以上となるように制御される。その他の構成は、図8および図11と同様であるので、図8および図11に示した構成要素と同一作用をなす構成要素には、同一参照符号を付して、その説明を省略する。
【0124】
ここで、共焦点顕微鏡における点像分布関数(PSF;Point Spread Function)について説明する。図14は、共焦点顕微鏡の基本的構成を示す模式図である。図14において、点光源120から放射された光は、レンズ121によりコリメートされた後、ビームスプリッタ122で反射されて対物レンズ123により物体124に集光される。また、物体124からの光(例えば蛍光)は、対物レンズ123、ビームスプリッタ122、集光レンズ125および共焦点ピンホール126を経て光検出器127で検出される。
【0125】
図14に示した共焦点顕微鏡において、対物レンズ123による物体124側のPSFをI(x,y)、光検出器127側のPSFをI(x,y)、共焦点ピンホール126の開口座標をd、物体124の発光強度分布をt、対物レンズ123の倍率Mを1、共焦点顕微鏡としてのPSFをh(x,y)とすると、次式(5)が成立する。
【0126】
【数5】

【0127】
なお、上式では、単純化のためM=1としているが、M≠1の場合は、物体124側と光検出器127側との座標をスケーリングする。例えば、光検出器127側の画像をg(x,y)、物体124の原画像をf(x,y)とすると、次式(6)が成立する。
【0128】
【数6】

【0129】
ここで、tをt=δ(x,y)のデルタ関数とおくと、上記式(5)は、次式(7)となる。
【0130】
【数7】

【0131】
さらに、d=δ(x,y)であれば、上記式(7)は、次式(8)となる。
【0132】
【数8】

【0133】
上式(8)から明らかなように、共焦点顕微鏡の分解能は、共焦点ピンホールを有しない顕微鏡よりも分解能がよくなる。ここで、通常の共焦点顕微鏡、つまり超解像の発現機能を持たない共焦点顕微鏡の場合は、IおよびIがともにガウス関数となる。これに対し、超解像の発現機能を有する超解像顕微鏡の場合は、Iがローレンツ関数で、Iがガウス関数となる特徴がある。したがって、PSFは、共焦点ピンホールの有無および超解像機能の有無によって異なることになる。
【0134】
図15は、各種顕微鏡のPSFを比較して示す図である。図15において、実線は、エアリディスクサイズの共焦点ピンホールを有する通常の共焦点顕微鏡のPSFを示す。破線は、共焦点ピンホールを持たない、つまり検出器サイズ無限大の超解像顕微鏡のPSFを示す。一点鎖線は、共焦点ピンホールを有する超解像共焦点顕微鏡において、共焦点ピンホールの直径を、光検出器側のPSFの半値幅とした場合の超解像共焦点顕微鏡のPSFを示す。
【0135】
図16(a)〜(d)は、各種顕微鏡の回折限界サイズのコントラスト伝達関数(CTF:Contrast Transfer Function)を説明するための図である。図16(a)は、回折限界サイズの白黒パターンの原画像を示す。図16(b)は、図16(a)の原画像に対する通常の共焦点顕微鏡のCTFを示し、図16(c)は、図16(a)の原画像に対する共焦点ピンホールを持たない超解像顕微鏡のCTFを示し、図16(d)は、図16(a)の原画像に対する超解像共焦点顕微鏡のCTFを示す。
【0136】
図15から明らかなように、共焦点ピンホールを持たない超解像顕微鏡のPSFと通常の共焦点顕微鏡のPSFとを比較すると、共焦点ピンホールを持たない超解像顕微鏡のPSFの方が、半値幅を小さく(細く)できる。その結果、図16(b)および図16(c)の比較から明らかなように、超解像顕微鏡においては、共焦点ピンホールを持たない場合でも、通常の共焦点顕微鏡よりも高いCTFが得られ、コントラストの良好な画像を取得することができる。
【0137】
しかしながら、図15に示したように、共焦点ピンホールを持たない超解像顕微鏡のPSFは、強度の低い裾野部分が通常の共焦点顕微鏡のPSFよりも拡がっている。そのため、蛍光ビーズのように観察対象が比較的まばらに存在する試料の場合は、コントラストの良好な画像が得られ、分解能を向上することができるが、特に観察対象が密集して存在する試料の場合は、物体側PSFと検出器側PSFとの畳み込み積分によって裾野の成分がオーバーラップして、コントラストが低下する場合がある。
【0138】
これに対し、本実施の形態におけるように、共焦点ピンホール96の開口を、使用するポンプ光およびイレース光に応じて、制御部112により、光検出器44(図8参照)側のPSFの例えば半値幅とする。このようにすると、図15に一点鎖線で示したように、PSF強度の低い裾野部分でも、通常の共焦点顕微鏡のPSFよりも拡がりを小さくできる。その結果、図16(d)に示したように、CTFが向上して、顕微鏡画像の切れが良くなり、特に観察対象が密集して存在する試料の場合は、コントラストの高い、超解像度の顕微鏡画像を得ることができる。
【0139】
つまり、通常の共焦点顕微鏡では、共焦点ピンホールのサイズを、光検出器におけるエアリディスクサイズ以上としている。その理由は、エアリディスクサイズよりも小さくしても、空間分解能は向上しないばかりでなく、検出信号が低下してS/Nが悪くなるからである。しかし、本実施の形態における超解像顕微鏡の場合は、光検出器44側のPSFの半値幅が小さい(細い)ので、共焦点ピンホール96のサイズをさらに小さくすることができる。
【0140】
本発明者によるシミュレーションの結果では、共焦点ピンホール96の直径をPSFの半値幅とすれば、光検出器44による受光量の低下を僅か30%程度に抑えて、CTFを著しく向上できることが確認できた。また、変調伝達関数(MTF:Modulation Transfer Function)についても、同様に著しく向上できることが確認できた。なお、共焦点ピンホール96のサイズは、光検出器44側のPSFの半値幅よりも小さくすると、光信号成分の受光量が低下して、逆にS/Nを低下させることになるとともに、超解像時の点像分布関数が充分細い場合は、共焦点ピンホール自体も不要となる。したがって、共焦点ピンホール96のサイズは、上式(4)を満たすのが好ましい。
【0141】
なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上記実施の形態において、変調光学素子38は、照明光路中で、かつ試料42からの応答光の光路中に配置することもできる。この場合、変調光学素子38は、試料42からの応答光(例えば、蛍光)に対して透過率を有するように形成される。このような構成は、単色の照明光を用いる場合にも同様に適用することができる。また、図7または図8に示した構成において、変調光学素子38は、ガルバノスキャンユニット63内の瞳共役面に配置することもできる。このようにすれば、スキャンによる光束のケラレが生じないので、所望のスポットパターンを常に安定して形成することが可能となる。
【0142】
また、上記実施の形態において、変調光学素子38は、図1に示したように光軸周りに2πで周回するように動径方向に分割された複数の光学多層膜領域を有して構成することもできる。この場合は、変調光学素子38の作製誤差を、別体または一体化した調整素子により調整することができる。
【0143】
例えば、変調光学素子38が、図17(a)に示すように、光軸周りに6分割された光学多層膜領域38a〜38fを有し、光学多層膜領域38cおよび38dの面積が、他の光学多層膜領域と異なるものとする。この場合は、図17(b)に示すように、式(1)を満たすように、光学多層膜領域38aおよび38cにおける透過率を調整素子により調整する。
【0144】
また、変調光学素子38が、図18(a)に示すように、設計値通りに作製されている場合において、顕微鏡光学系の他の領域で発生するイレース光の吸収効果等によって式(1)を満たさない場合が想定される。この場合は、例えば図18(b)に示すように、式(1)を満たすように、光学多層膜領域38b,38c,38dについては透過率を調整素子により調整し、光学多層膜領域38e,38fについては位相および透過率を調整素子により調整する。なお、図17(b)や図18(b)に示した変調光学素子38を用いる場合、アイリス37は省略しても良いし、さらに、アイリス37によって変調光学素子38を透過後のイレース光の特性を微調整するようにしても良い。
【0145】
さらに、第3実施の形態の構成は、単に蛍光抑制型の超解像顕微鏡のみならず、赤外光と中空状の可視光とを同軸照射する赤外超解像顕微鏡法にも同様に応用できる(例えば、Bokor. et. al OPTICS COMMUNICATIONS, 283 (2010) 509)。また、第3実施の形態においては、複数の単色発振のレーザ光源を用いるのに代えて、光パラメトリック発振のレーザ光源、Tiサファイアレーザ、スパーコンティニュアムレーザなどの波長可変レーザを少なくとも2つ用いて、種々の波長の組合せに対応できるように構成することもできる。
【0146】
さらに、上記実施の形態では、2色の光源を用いた超解像顕微鏡を例示したが、本発明は、2色以上の複数の光源を用いた顕微鏡システムにも適応可能であり(例えば、S Hell. et. al J. Microscopy 236(2009)35)、その汎用性はより広いものである。
【符号の説明】
【0147】
1 変調光学素子
2 透過率補償プレート
10 変調光学素子
11 中央部領域
20 フレネルゾーンプレート
21 透過率補償プレート
31 ポンプ光光源
32 イレース光光源
34 反射ミラー
35 ダイクロイックミラー
37 アイリス
38 変調光学素子
39 ビームスプリッタ
40 顕微鏡対物レンズ
41 試料ステージ
42 試料
43 分光器
44 光検出器
50 変調光学素子
60 集光レンズ
61 シングルモードファイバ
62 コリメータレンズ
63 ガルバノスキャンユニット
64 瞳投影レンズ
71,72,73,74,75 レーザ光源
86,91 回転型NDフィルタ
92,93 音響光学波長可変フィルタ
96 共焦点ピンホール
97 フィルタ部
101,102 回転フィルタ
111x,111y 駆動部
112 制御部

【特許請求の範囲】
【請求項1】
照明光を空間変調する複数の領域を有する変調光学素子と、
該変調光学素子により変調される前記照明光の光学特性を調整する調整素子と、
を備える顕微鏡。
【請求項2】
前記調整素子は、前記変調光学素子を透過した前記照明光が、前記変調光学素子の前記複数の領域間で、前記照明光の光軸を中心として透過率および位相の少なくとも一つの非対称成分が相殺されるように調整する、請求項1に記載の顕微鏡。
【請求項3】
前記調整素子は、前記変調光学素子により空間変調された前記照明光の瞳面内における前記複数の領域に対応する各領域iの面積をS、当該領域iを通過した光の位相をθ、透過率をT、エネルギー密度をUとするとき、以下の関係式を満たすように調整する、請求項1に記載の顕微鏡。
【数1】

【請求項4】
前記調整素子は、前記変調光学素子に一体に形成されている、請求項1に記載の顕微鏡。
【請求項5】
前記変調光学素子は、前記複数の領域として、光軸を中心として動径方向に分割された領域を含む、請求項1に記載の顕微鏡。
【請求項6】
前記変調光学素子における前記複数の領域は、光軸を挟んで位置する領域aおよび領域bにおける透過率をそれぞれTおよびTとし、面積をそれぞれSおよびSとし、位相をそれぞれθおよびθとするとき、
sinθ+Tsinθ=0
を満たす、請求項5に記載の顕微鏡。
【請求項7】
前記領域aおよび前記領域bの面積が等しい、請求項6に記載の顕微鏡。
【請求項8】
前記変調光学素子は、前記複数の領域として、同心円状に分割された領域を含む、請求項1または5に記載の顕微鏡。
【請求項9】
前記照明光は、少なくとも2以上の励起量子状態をもつ物質を安定状態から第1量子状態に励起して発光させるための第1照明光と、前記物質を更に他の量子状態に遷移させて発光を抑制する第2照明光とを有し、
前記第1照明光と前記第2照明光とを一部重ね合わせて前記物質を含む試料に集光する対物レンズを含む照明光学系を、さらに備え、
前記照明光学系に前記変調光学素子および前記調整素子が配置されている、請求項1に記載の顕微鏡。
【請求項10】
前記変調光学素子は、前記第2照明光を位相変調する、請求項9に記載の顕微鏡。
【請求項11】
前記変調光学素子は、前記第1照明光を電場の符号を変えずに透過させる、請求項10に記載の顕微鏡。
【請求項12】
前記変調光学素子は、光学多層膜を備える、請求項11に記載の顕微鏡。
【請求項13】
前記照明光学系は、前記第1照明光の光軸と前記第2照明光の光軸とを空間的に一致させて重ね合わせる、請求項9に記載の顕微鏡。
【請求項14】
前記照明光学系は、シングルモードファイバを有し、
前記第1照明光および前記第2照明光は、前記シングルモードファイバを経て前記変調光学素子および前記調整素子に入射される、請求項13に記載の顕微鏡。
【請求項15】
前記調整素子は、前記照明光の光束径を調整するアイリスからなる、請求項9に記載の顕微鏡。
【請求項16】
前記アイリスは、入射する照明光の光軸に対して直交する方向に移動可能である、請求項15に記載の顕微鏡。
【請求項17】
少なくとも3種類以上の波長の照明光を発生可能な複数の照明光源を有し、
前記第1照明光および前記第2照明光は、前記複数の照明光源から同時に発生される、請求項9乃至16のいずれか一項に記載の顕微鏡。
【請求項18】
前記照明光学系からの前記第1照明光および前記第2照明光の照射により前記試料から発生する光を検出する光検出器と、
該光検出器の入射面側で前記対物レンズの焦点位置と共役な位置に配置された開口が可変の共焦点ピンホールと、
該共焦点ピンホールの前記開口を可変する駆動部と、
前記複数の照明光源を制御して前記第1照明光および前記第2照明光を同時に発生させるとともに、前記第1照明光および前記第2照明光に応じて、前記共焦点ピンホールの前記開口が下式を満たすように、前記駆動部を介して前記開口を制御する制御部と、
を備えることを特徴とする請求項17に記載の顕微鏡。
【数2】


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2012−98692(P2012−98692A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2011−59176(P2011−59176)
【出願日】平成23年3月17日(2011.3.17)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】