説明

高圧処理方法

【課題】基板に対する洗浄処理の面内均一性やロット間均一性を高めて基板を良好に洗浄することができる高圧処理方法を提供する。
【解決手段】エッチャントをSCCO2に混合させた処理流体を処理チャンバーに供給して洗浄処理を開始する(ステップS3)が、エッチャント内にメタノールを含有させて洗浄処理の開始時点より処理チャンバー内を高比誘電率環境に整えている。また、エッチャントの送込を停止した(ステップS4)後、環境調整剤としてイソプロピルアルコール(IPA)の送込を開始して(ステップS5)、処理チャンバー内を低比誘電率環境に整えている。したがって、注入口と排出口が異なる位置に配設されることに起因して洗浄開始時点や洗浄終了時点でタイムラグが存在するものの、基板各部が異なるエッチング速度で処理される時間のバラツキを抑えたり短縮することができる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、高圧流体に対してフッ化水素を必須的に混合させた処理流体を基板に接触させて該基板に対して洗浄処理を施す高圧処理方法に関するものである。ここでは、基板としては、例えば半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、光ディスク用基板などの各種基板(以下、単に「基板」という)が含まれる。
【背景技術】
【0002】
半導体ウエハ等の基板を被処理体として該基板に対して一連の処理を施す処理工程においては、基板自体やその上に形成された種々の膜表面に形成されてしまう自然酸化膜および化学酸化膜、あるいは基板上に塗布され不要となったレジスト等の不要物を基板から除去するための洗浄工程が必須工程となる。そこで、これらの不要物を基板から除去する処理方法のひとつとして、超臨界流体などの高圧流体に対してフッ化水素を必須的に混合させた処理流体を基板の表面に接触させて該基板から不要物を除去する高圧処理方法が提案されている(特許文献1参照)。
【0003】
【特許文献1】特開2004−158534号公報(図1)
【発明の開示】
【発明が解決しようとする課題】
【0004】
この高圧処理方法では、洗浄処理の対象となる基板を圧力容器の内部に形成される処理チャンバーに収容した後、処理流体を圧力容器の注入口より供給して基板表面を洗浄する。すなわち、フッ化水素を高圧流体に混合して調製した処理流体が圧力容器の注入口より供給されると、処理チャンバー内でのフッ化水素濃度がゼロから徐々に上昇していき、一定時間後に所定濃度に達する。また、洗浄処理を終了する際には、フッ化水素の高圧流体への混合を停止してフッ化水素を含まない処理流体が圧力容器の注入口より供給されるとともに圧力容器の排出口より洗浄後の処理流体が排出される。これによって、処理チャンバー内でのフッ化水素濃度が減少し、最終的にゼロとなって洗浄処理が完了する。
【0005】
ここで問題となるのが、処理チャンバー内でのフッ化水素濃度の分布である。すなわち、圧力容器では通常、注入口と排出口とは異なる位置に設けられているため、処理チャンバー内でのフッ化水素濃度の時間的変化が注入口近傍と排出口近傍とで異なる。例えばフッ化水素を含む処理流体の供給開始直後においては、注入口近傍でのフッ化水素濃度は急激に上昇するが、排出口近傍での濃度は低いままである。そして、所定時間が経過すると、排出口近傍での濃度が上昇してくる。逆に、フッ化水素を含まない処理流体の供給開始直後においては、注入口近傍でのフッ化水素濃度は急激に低下するが、排出口近傍での濃度は高い状態に維持されている。そして、所定時間が経過すると、排出口近傍での濃度も低下して処理チャンバー全体でフッ化水素濃度はゼロとなる。このように圧力容器内において注入口と排出口とで濃度変化にタイムラグは生じている。その結果、基板全面に対する洗浄処理の面内均一性が劣化してしまうという問題が生じていた。
【0006】
この発明は上記課題に鑑みなされたものであり、基板に対する洗浄処理の面内均一性を高めて基板を良好に洗浄することができ、そして処理のロット間の均一性を高める高圧処理方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
この発明は、圧力容器の注入口より高圧流体を含む処理流体を圧力容器内に供給して該圧力容器内に収容された基板を洗浄する一方、洗浄後の処理流体を圧力容器の排出口より排出して基板に対する洗浄処理を施す高圧処理方法であって、上記目的を達成するため、洗浄処理が、第1比誘電率を有する第1溶剤とフッ化水素とを必須的に含むエッチャントを高圧流体に混合して調製した第1流体を処理流体として注入口より供給して圧力容器内を高比誘電率環境に整える高比誘電率洗浄工程と、高比誘電率洗浄工程を所定時間を継続させた後、エッチャントの高圧流体への混合を停止するとともに、第1比誘電率よりも低い第2比誘電率を有する第2溶剤を必須的に含む環境調整剤を高圧流体に混合して調製した第2流体を処理流体として注入口より供給して圧力容器内を低比誘電率環境に整える低比誘電率洗浄工程とを備えたことを特徴としている。
【0008】
このように構成された発明では、高圧流体を含む処理流体が圧力容器の注入口より圧力容器内に供給されて該圧力容器内に収容された基板に対する洗浄処理が実行される。また、洗浄後の処理流体については、圧力容器の排出口より排出される。このように、圧力容器への処理流体の供給は注入口を介して行われる一方、圧力容器からの処理流体の排出は排出口を介して行われる。このため、処理流体に含まれるフッ化水素の濃度変化が圧力容器内において注入口と排出口とでタイムラグは生じる。つまり、フッ化水素濃度が基板表面のうち注入口近傍と排出口近傍とで異なるという、時間帯が発生し、これが面内均一性を低減させる主要因のひとつとなっていた。そこで、本発明では、次に詳述するようにフッ化水素による基板洗浄能力(エッチング速度)が圧力容器内での比誘電率環境に応じて変化することを利用して洗浄処理の開始直後と終了直前とで基板洗浄能力を制御している。より具体的には、洗浄処理の開始直後より高比誘電率環境に調整されて比較的短時間内に基板全面に対して所望の基板洗浄能力で洗浄処理が実行される。一方、終了直前より低比誘電率環境に調整されて比較的短時間内に基板洗浄能力がゼロとなる。これにより基板に対する洗浄処理の面内均一性が高められる。
【0009】
なお、本発明にかかる高圧処理方法において、用いられる高圧流体としては、安全性、価格、超臨界状態にするのが容易、といった点で、二酸化炭素が好ましい。高圧流体を用いるのは、拡散係数が高く、溶解した汚染物質を媒体中に分散することができるためであり、その高圧流体を超臨界流体にした場合には、気体と液体の中間の性質を有するようになり、拡散係数は気体に近づき、微細なパターン部分にもよく浸透することができる。また、超臨界流体の密度は、液体に近く、気体に比べて遥かに大量の剥離用組成物を含むことができる。
【0010】
ここで、本発明における高圧流体とは、1MPa以上の圧力の流体である。好ましく用いることのできる高圧流体は、高密度、高溶解性、低粘度、高拡散性の性質が認められる流体であり、さらに好ましいものは超臨界状態または亜臨界状態の流体である。二酸化炭素を超臨界流体とするには31゜C、7.4MPa以上とすればよく、特に洗浄工程には、5〜30MPaの亜臨界または超臨界流体(高圧流体)を用いることが好ましく、7.4〜30MPaでこれらの処理を行うことがより好ましい。
【発明の効果】
【0011】
以上のように、この発明によれば、圧力容器内で基板に対して行う洗浄処理を、上記した高比誘電率洗浄工程と、低比誘電率洗浄工程とで構成している。このため、洗浄処理の開始直後より比較的短時間で基板全面に対して所望の基板洗浄能力で洗浄処理を実行することができ、またエッチャントの高圧流体への混合停止から比較的短時間で基板全面に対する洗浄能力をゼロにすることができる。その結果、基板に対する洗浄処理の面内均一性を高めて基板を良好に洗浄することができる。
【発明を実施するための最良の形態】
【0012】
<基板洗浄能力と洗浄環境との関係>
特許文献1に記載されているように、超臨界二酸化炭素などの高圧流体にフッ化水素を必須的に混合して調製した処理流体を基板表面に接触させることによって、該基板表面に付着している酸化膜などをエッチング除去して基板洗浄を行うことができる。そこで、本願発明者は処理流体による基板洗浄能力に関して種々の検討を行ったところ、基板洗浄能力が洗浄環境、特に圧力容器内の比誘電率の影響を強く受けるとの知見を得た。すなわち、処理流体中のフッ化水素濃度が同一であったとしても、比誘電率が高くなるにしたがって洗浄能力が高まる。このことを次のような条件でシリコン基板上に形成される酸化膜をエッチング除去する際のエッチング速度により説明する。
【0013】
ここで、超臨界二酸化炭素(以下「SCCO2」と称する)に対してフッ化水素と溶剤を混合させた処理流体により、熱酸化膜とボロンリンガラス膜(BPSG)をそれぞれエッチングした際のエッチング選択性、つまりエッチングレート選択比(=BPSG/熱酸化膜)を調べた。また、圧力容器内での比誘電率環境を変化させるために、互いに比誘電率の異なる溶剤について、上記エッチング選択性を調べたところ、図1に示すような相関関係が模式的に得られた。すなわち、圧力容器内の比誘電率環境が変化するのに応じてエッチング選択性は変化している。より詳しく説明すると、溶剤の比誘電率が高くなるに伴ってエッチング選択性は小さくなり、酸化膜を洗浄除去する速度、つまりエッチング速度は高くなっている。しがたって、本願発明者は、高圧流体に対して混合させる溶剤の種類を選定して圧力容器内の比誘電率をコントロールすることによって、圧力容器内でのエッチング速度を制御することができるとの知見を得た。つまり、溶剤選定によりエッチング速度を高めたり、低下させたりすることができることを見出した。
【0014】
より具体的には、圧力容器内を高比誘電率環境に整えるための第1溶剤としては、メタノール、、アセトニトリル、ホルムアミド、メチルホルムアミド、ジメチルホルムアミド、メチルアセトアミド、ジメチルアセトアミドおよび炭酸エチレン等を用いることができる。また、第1溶剤の第1比誘電率については、25゜Cにおいて30以上であるものを採用するのが望ましい。また、高比誘電率環境を形成するためには、高圧流体中のエッチャントの含有量を1〜20重量%に設定するのが望ましい。また、洗浄処理を確実、しかも適切に行うためには、エッチャント中のフッ化水素の含有量を0.0001〜5重量%に設定するのが望ましい。また、エッチャントがさらに水を含み、エッチャント中の水の濃度を0.001〜10重量%に調製してもよい。さらに、エッチャントは1価アルコール、多価アルコール、ジメチルスルホキシド、N−メチル−2−ピロリドンおよびプロピレンカーボネート(炭酸プロピレン)からなる群より選ばれる少なくとも1種をさらに含んでもよい。ここでは、「1価アルコール」として、エタノール、プロパノールまたはブタノールが使用可能である。また、「多価アルコール」として、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、ジプロピレングリコール、オクチレングリコール、ブタンジオール、ペンタメチレングリコールがいずれも使用可能である。
【0015】
一方、圧力容器内を低比誘電率環境に整えるための第2溶剤としては、プロパノール、ブタノール、酢酸、テトラヒドロフラン(THF)およびアセトン等を用いることができる。また、第2溶剤の第2比誘電率については、25゜Cにおいて20.7以下であるものを採用するのが望ましい。また、低比誘電率環境を形成するためには、高圧流体中の環境調整剤の含有量を1〜20重量%に設定するのが望ましい。また、環境調整剤中の水の濃度を0.001〜10重量%に調製してもよい。さらに、環境調整剤は1価アルコール、多価アルコール、ジメチルスルホキシド、N−メチル−2−ピロリドンおよびプロピレンカーボネートからなる群より選ばれる少なくとも1種をさらに含んでもよい。ここでは、「1価アルコール」として、メタノールまたはエタノールが使用可能である。また、「多価アルコール」として、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、ジプロピレングリコール、オクチレングリコール、ブタンジオール、ペンタメチレングリコールがいずれも使用可能である。
【0016】
本願発明者は、このような基板洗浄能力と洗浄環境との関係に基づき基板に対する洗浄処理の面内均一性を高める技術を創作した。以下、実施形態を通じて本発明を詳述する。
【0017】
<実施形態>
図2は本発明にかかる高圧処理方法の一実施形態を実施可能な高圧処理装置を示す図である。また、図3は図2の高圧処理装置を制御するための電気的構成を示すブロック図である。この高圧処理装置は、圧力容器1の内部に形成される処理チャンバー11にSCCO2を含む処理流体を導入し、その処理チャンバー11において保持されている半導体ウエハなどの基板Wの表面に付着する酸化膜などをエッチング除去する装置である。こうして基板Wに対する洗浄処理が実行される。以下、その構成および動作について詳細に説明する。
【0018】
この高圧処理装置100は、大きく分けて3つのユニット、(1)処理流体を調製して処理チャンバー11に供給する処理流体供給ユニットAと、(2)圧力容器1を有し、圧力容器1の処理チャンバー11内で処理流体により酸化膜をエッチングする基板処理ユニットBと、(3)基板処理に使用された二酸化炭素などを回収して貯留する貯留ユニットCを備えている。
【0019】
これらのユニットのうち、処理流体供給ユニットAには、SCCO2を圧力容器1に向けて圧送する高圧二酸化炭素供給部2と、フッ化水素を供給するためのフッ化水素供給部3と、メタノールを供給するためのメタノール供給部4と、イソプロピルアルコール(IPA)を供給するためのIPA供給部5とが設けられている。
【0020】
この高圧二酸化炭素供給部2は、二酸化炭素貯留タンク21と高圧ポンプ22を備えている。上記のように高圧二酸化炭素として、SCCO2を用いる場合、二酸化炭素貯留タンク21には、通常、液化二酸化炭素が貯留されている。また、過冷却器(図示省略)で予め流体を冷却して、高圧ポンプ22内でのガス化を防止してもよい。そして、該流体を、高圧ポンプ22で加圧すれば高圧液化二酸化炭素を得ることができる。また、高圧ポンプ22の出口側は第1ヒータ23、高圧弁24および第2ヒータ25を介挿してなる高圧配管26により圧力容器1の注入口IPに接続されている。そして、装置全体を制御するコントローラ10からの開閉指令に応じて高圧弁24を開成することで、高圧ポンプ22で加圧された高圧液化二酸化炭素を第1ヒータ23により加熱して高圧二酸化炭素としてSCCO2を得るとともに、このSCCO2を圧力容器1に直接的に圧送する。これにより、SCCO2を含む処理流体が注入口IPを介して圧力容器1の内部、つまり処理チャンバー11に供給される。なお、高圧弁24と第2ヒータ25との間で高圧配管26は3本の分岐配管31,41,51を分岐している。そして、分岐配管31がフッ化水素供給部3のフッ化水素貯留タンク32と接続され、分岐配管41がメタノール供給部4のメタノール貯留タンク42と接続され、さらに分岐配管51がIPA供給部5のIPA貯留タンク52と接続されている。なお、3つのユニット3〜5のうちユニット3を省き、ユニット4のタンク42にフッ化水素(HF)とメタノールが所定濃度でプレミックスされた液を貯留してもよい。
【0021】
フッ化水素供給部3は、フッ化水素を貯留するフッ化水素貯留タンク32を備えている。このフッ化水素貯留タンク32は分岐配管31により高圧配管26と接続されている。また、この分岐配管31には、送給ポンプ33および高圧弁34が介挿されている。このため、コントローラ10からの開閉指令にしたがって高圧弁34の開閉動作を制御することで、フッ化水素貯留タンク32内のフッ化水素が高圧配管26に送り込まれてSCCO2に対してフッ化水素を混合可能となっている。
【0022】
また、メタノール供給部4は、この実施形態において本発明の「第1溶剤」として機能するメタノール(25゜Cにおける比誘電率=32.6)を貯留するメタノール貯留タンク42を備えている。このメタノール貯留タンク42は分岐配管41により高圧配管26と接続されている。また、この分岐配管41には、送給ポンプ43および高圧弁44が介挿されている。このため、コントローラ10からの開閉指令にしたがって高圧弁44の開閉動作を制御することで、メタノール貯留タンク42内のメタノールが高圧配管26に送り込まれてSCCO2に対してメタノールを混合可能となっている。
【0023】
さらに、IPA供給部5は、この実施形態において本発明の「第2溶剤」として機能するイソプロピルアルコール(25゜Cにおける比誘電率=19.9)を供給するものであり、イソプロピルアルコールを貯留するIPA貯留タンク52を備えている。このIPA貯留タンク52は分岐配管51により高圧配管26と接続されている。また、この分岐配管51には、送給ポンプ53および高圧弁54が介挿されている。このため、コントローラ10からの開閉指令にしたがって高圧弁54の開閉動作を制御することで、IPA貯留タンク52内のイソプロピルアルコールが高圧配管26に送り込まれてSCCO2に対してイソプロピルアルコールを混合可能となっている。
【0024】
基板処理ユニットBでは、圧力容器1の排出口OPが高圧配管12により貯留ユニットCの貯留部6と連通されている。また、この高圧配管12には圧力調整弁13が介挿されている。このため、コントローラ10からの開閉指令に応じて圧力調整弁13を開くと、圧力容器1内、つまり処理チャンバー11の処理流体などが排出口OPから貯留部6に排出される一方、圧力調整弁13を閉じると、圧力容器1に処理流体を閉じ込めることができる。また、圧力調整弁13の開閉制御により処理チャンバー11内の圧力を調整することも可能である。
【0025】
貯留ユニットCの貯留部6としては、例えば気液分離容器等を設ければ良く、気液分離容器を用いてSCCO2を気体部分と液体部分とに分離し、別々の経路を通して廃棄する。あるいは、各成分を回収(および必要により精製)して再利用してもよい。なお、気液分離容器により分離された気体成分と液体成分は、別々の経路を通して系外へ排出してもよい。
【0026】
次に、上記のように構成された高圧処理装置100による洗浄処理について図4および図5を参照しつつ説明する。図4は本発明にかかる高圧処理方法の一実施形態を示すフローチャートである。また、図5は圧力容器の注入口および排出口での処理状況を示すグラフである。なお、この装置の初期状態では、すべての弁13,24,34,44,54は閉じられるとともに、ポンプ22,33,43,53も停止状態にある。
【0027】
産業用ロボット等のハンドリング装置や搬送装置により、基板Wが1枚、処理チャンバー11にローディングされると、処理チャンバー11を閉じて処理準備を完了する(ステップS1)。それに続いて、高圧弁24を開いてSCCO2を高圧二酸化炭素供給部2から処理チャンバー11に圧送可能な状態にした後、高圧ポンプ22を作動させて処理チャンバー11へのSCCO2の圧送を開始する(ステップS2)。これによりSCCO2が処理チャンバー11に圧送されていき、処理チャンバー11内の圧力が徐々に上昇していく。このとき、圧力調整弁13をコントローラ10からの開閉指令に応じて開閉制御することで処理チャンバー11内の圧力が一定、例えば20MPa程度に保たれる。なお、この開閉制御による圧力調整は後で説明する減圧処理が完了するまで継続される。さらに処理チャンバー11の温度調整が必要な場合は圧力容器1の近傍に設けた第2ヒータ25加熱器により、表面処理に適した温度に設定する。このように、本実施形態では、SCCO2の圧力や温度に関するプロセス条件を制御可能となっている。
【0028】
次いで、コントローラ10からの制御指令に応じてフッ化水素(HF)とメタノールからなるエッチャントを高圧配管26に送り込み、これによってフッ化水素とメタノールとからなるエッチャントがSCCO2に混合されて処理流体が調製される。この処理流体が本発明の「第1流体」に相当する。そして、該処理流体を注入口IPを介して処理チャンバー11に供給する(ステップS3)。より具体的には、フッ化水素を送り込むために、送給ポンプ33を稼動させるとともに高圧弁34を開く。これによって、基板洗浄の主成分となるフッ化水素がフッ化水素貯留タンク32から分岐配管31を介して高圧配管26に送り込まれる。また、本発明の「第1溶剤」としてメタノールを送り込むために、送給ポンプ43を稼動させるとともに高圧弁44を開く。これによって、メタノールがメタノール貯留タンク42から分岐配管41を介して高圧配管26に送り込まれる。このように、この実施形態では、フッ化水素(HF)とメタノールとを含むエッチャントをSCCO2に混合させた第1流体を処理流体として注入口IPより処理チャンバー11に供給し、該処理チャンバー11内を高比誘電率環境に整えるとともに、処理流体(SCCO2+HF+メタノール)により基板Wに対して洗浄処理を開始する(高比誘電率洗浄工程)。
【0029】
このように処理流体の処理チャンバー11への供給開始により洗浄処理が始まるが、このとき処理流体(SCCO2+フッ化水素+メタノール)を処理チャンバー11に供給し、処理チャンバー11内に封止して洗浄処理を継続させてもよい。また、SCCO2やエッチャント(フッ化水素+メタノール)の送込は連続的に行いつつ、圧力調整弁13の開閉を制御して処理チャンバー11内の圧力状態を一定に維持したまま洗浄処理を行ってもよい。ただし、洗浄処理に伴ってHF濃度が減少することを考慮すると、後者のように処理流体を常時流通させるのが望ましい。
【0030】
この高比誘電率洗浄工程における、処理チャンバー11内での処理状況について図5を参照しつつ説明する。処理チャンバー11における注入口IPの近傍では、エッチャントの送込開始(タイミングT1)とほぼ同時に、処理流体(SCCO2+HF+メタノール)が供給されてHF濃度の上昇が開始される。これに対し、排出口OPの近傍では処理チャンバー11の容積に対応したタイムラグTLsが経過して初めてHF濃度が上昇する。そして、エッチャントの送込開始から、排出口OPの近傍においてHF濃度が一定値となるまでの時間ΔThsの間、注入口IP近傍と排出口OP近傍との間でHF濃度が相違している。このように処理チャンバー11内でHF濃度が部分的に異なる時間帯ΔThsが存在する。しかしながら、本実施形態では、洗浄処理の開始時点より処理チャンバー11内を高比誘電率環境に整えているため、エッチング速度が極めて急速に一定値に達している。そのため、エッチング速度が高い状態にある時間が短くなる。つまり、時間ΔThsの間は注入口IPと排出口OPにおいてエッチング速度が高い状態にある時間をできるだけ小さくすることができる。なぜなら、高い状態でエッチャントの送込にばらつきが発生するとエッチング処理時間の変動も大きくなる。特に高圧処理装置100のバルブの開閉度やSCCO2の流量が不定期に変動すると処理のロット間でエッチャント濃度がばらつき、この影響によってエッチング処理時間のばらつきも大きくなりロット間の不均一性も大きくなる。そこで、時間ΔThsの間においてエッチング速度を低下するようにすることでロット間の不均一性も抑えることができる。
【0031】
こうして洗浄処理が開始された後、所定時間の間、処理流体(SCCO2+HF+メタノール)の供給が継続されて高比誘電率環境での洗浄処理が実行される。そして、所定時間が経過すると、エッチャントの送込を停止する(ステップS4)とともに、環境調整剤としてイソプロピルアルコール(IPA)の送込を開始する(ステップS5)。すなわち、エッチャントの代わりにイソプロピルアルコールがSCCO2に混合されて処理流体が調製される。この処理流体が本発明の「第2流体」に相当する。そして、該処理流体を注入口IPを介して処理チャンバー11に供給する。このように、この実施形態では、第1溶剤よりも低い比誘電率を有するイソプロピルアルコールをSCCO2に混合させた第2流体を処理流体として注入口IPより処理チャンバー11に供給し、該処理チャンバー11内を低比誘電率環境に整えながら、エッチング速度を低減させていき、基板Wに対して洗浄処理を終了する(低比誘電率洗浄工程)。
【0032】
この低比誘電率洗浄工程における、処理チャンバー11内での処理状況について図5を参照しつつ説明する。処理チャンバー11における注入口IPの近傍では、イソプロピルアルコールの送込開始(タイミングT2)とほぼ同時に、処理流体(SCCO2+IPA)が供給されてHF濃度の低下が開始される。これに対し、排出口OPの近傍では処理チャンバー11の容積に対応したタイムラグTLeが経過して初めてHF濃度が低下し始める。そして、エッチャントから環境調整剤への切換(タイミングT2)から、排出口OPの近傍においてHF濃度がゼロとなるまでの時間ΔTheの間、注入口IP近傍と排出口OP近傍との間で処理チャンバー11内に残留しているHF濃度が相違している。このように処理チャンバー11内でHF濃度が部分的に異なる時間帯ΔTheが存在する。しかしながら、本実施形態では、環境調整剤の送込開始時点より処理チャンバー11内を低比誘電率環境に整えているため、エッチング速度が極めて急速に低下することで短時間に実効的にほぼゼロに達している。そのため、タイミングT2から排出口OP側でのエッチング速度がゼロに達するまでの時間ΔTreが時間ΔTheよりも短くなる。つまり、注入口IPと排出口OPが異なる位置に配設されることに起因して洗浄終了時点でタイムラグTLeが存在するものの、基板各部が異なるエッチング速度で処理される時間を短縮することができる。ここで時間ΔTheの間に注入口IPと排出口OPにおいてエッチング速度が高い状態にある時間をできるだけ小さくすることができる。これによって時間ΔThsと同様にロット間のエッチング不均一性も抑えることができる。
【0033】
図4に戻って説明を続ける。上記のようにして洗浄処理が完了すると、タイミングT3でイソプロピルアルコールの送込を停止する(ステップS6)が、SCCO2の圧送についてはそのまま継続され、SCCO2のみが処理チャンバー11に供給される(ステップS7)。これにより、基板表面および処理チャンバー11内に存在する第2溶剤成分は高圧配管12および圧力調整弁13を介して貯留部6に排出される(リンス工程)。こうして第2溶剤成分のすべてが基板表面および処理チャンバー11から排出されると、高圧ポンプ22を停止してSCCO2の圧送を停止する。そして、圧力調整弁13の開閉を制御することで処理チャンバー11内を常圧に戻す(ステップS8)。この減圧過程において、処理チャンバー11内に残留するSCCO2は気体になって蒸発するので、基板表面にシミ等が発生するなどの不具合を発生させることなく、基板Wを乾燥させることができる。しかも、近年、基板表面に微細パターンが形成されることが多く、乾燥処理の際に微細パターンが破壊されるという問題がクローズアップされているが、減圧乾燥を用いることで上記問題を解消することができる。
【0034】
そして、処理チャンバー11が常圧に戻ると、処理チャンバー11を開き、産業用ロボット等のハンドリング装置や搬送装置により洗浄処理済みの基板Wをアンロードする(ステップS9)。こうして、一連の表面工程、つまり洗浄工程+リンス工程+乾燥工程が完了する。そして、次の未処理基板Wが搬送されてくると、上記動作が繰り返されていく。
【0035】
以上のように、この実施形態では、ステップS3でエッチャントをSCCO2に混合させた処理流体を処理チャンバー11に供給して洗浄処理を開始するが、エッチャント内にメタノールを含有させて洗浄処理の開始時点より処理チャンバー11内を高比誘電率環境に整えている。このため時間ΔThs内にエッチング速度を低下した状態から基板全面に対して所望のエッチング速度(洗浄能力)で洗浄処理が実行される。一方、エッチャントの送込を停止した(ステップS4)後、環境調整剤としてイソプロピルアルコール(IPA)の送込を開始して(ステップS5)、処理チャンバー11内を低比誘電率環境に整えている。このため、比較的短時間ΔTre内でエッチング速度が実効的にほぼゼロとなる。したがって、注入口IPと排出口OPが異なる位置に配設されることに起因して洗浄開始直後や洗浄終了直前においてHF濃度が部分的に異なる時間帯ΔThs、ΔTheが存在するものの、基板各部が異なるエッチング速度で処理される時間のバラツキを抑えたり時間を短縮することができる。その結果、基板Wに対する洗浄処理の面内均一性を高めて基板Wを良好に洗浄することができ、そして処理のロット間の均一性を高めることができる。
【0036】
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、基板を1枚ずつ処理する枚葉方式の高圧処理方法に対して本発明を適用しているが、複数枚の基板を同時に処理する、いわゆるバッチ方式の高圧処理方法に対しても本発明を適用することができる。
【0037】
さらには、高比誘電率工程に用いる混合溶液は30以上の高比誘電率成分のみによって構成されるとは限らない。混合溶液が全体として30以上になればよいのであって、たとえば、THFやIPA等の低比誘電率成分を含んでいたとしても、水やメタノールの添加によって系全体として高比誘電率の混合溶液となれば、それでよい。低比誘電率工程においても同様である。たとえ水や炭酸エチレンやメタノールを含んでいたとしても系全体として低比誘電率となっていればそれでよい。
【産業上の利用可能性】
【0038】
本発明は、高圧流体に対してフッ化水素を必須的に混合させた処理流体を基板に接触させて該基板に対して洗浄処理を施す高圧処理方法全般に適用することができる。
【図面の簡単な説明】
【0039】
【図1】圧力容器内の比誘電率環境とエッチング選択性との関係を示すグラフである。
【図2】本発明にかかる高圧処理方法の一実施形態を実施可能な高圧処理装置を示す図である。
【図3】図2の高圧処理装置を制御するための電気的構成を示すブロック図である。
【図4】本発明にかかる高圧処理方法の一実施形態を示すフローチャートである。
【図5】圧力容器の注入口および排出口での処理状況を示すグラフである。
【符号の説明】
【0040】
1…圧力容器
2…高圧二酸化炭素供給部
3…フッ化水素供給部
4…メタノール供給部
5…IPA供給部
11…処理チャンバー
IP…(圧力容器の)注入口
OP…(圧力容器の)排出口
W…基板

【特許請求の範囲】
【請求項1】
圧力容器の注入口より高圧流体を含む処理流体を前記圧力容器内に供給して該圧力容器内に収容された基板を洗浄する一方、洗浄後の処理流体を前記圧力容器の排出口より排出して前記基板に対する洗浄処理を施す高圧処理方法であって、
前記洗浄処理が、
第1比誘電率を有する第1溶剤とフッ化水素とを必須的に含むエッチャントを前記高圧流体に混合して調製した第1流体を前記処理流体として前記注入口より供給して前記圧力容器内を高比誘電率環境に整える高比誘電率洗浄工程と、
前記高比誘電率洗浄工程を所定時間を継続させた後、前記エッチャントの前記高圧流体への混合を停止するとともに、前記第1比誘電率よりも低い第2比誘電率を有する第2溶剤を必須的に含む環境調整剤を前記高圧流体に混合して調製した第2流体を前記処理流体として前記注入口より供給して前記圧力容器内を低比誘電率環境に整える低比誘電率洗浄工程と
を備えたことを特徴とする高圧処理方法。
【請求項2】
前記高比誘電率洗浄工程における、前記高圧流体中の前記エッチャントの含有量が1〜20重量%である請求項1記載の高圧処理方法。
【請求項3】
前記第1比誘電率が25゜Cにおいて30以上である請求項1または2記載の高圧処理方法。
【請求項4】
前記第1溶剤は、メタノール、、アセトニトリル、ホルムアミド、メチルホルムアミド、ジメチルホルムアミド、メチルアセトアミド、ジメチルアセトアミドおよび炭酸エチレンからなる群より選ばれる少なくとも1種を含んでいる請求項1または2記載の高圧処理方法。
【請求項5】
前記高比誘電率洗浄工程における、前記エッチャント中のフッ化水素の含有量が0.0001〜5重量%である請求項1ないし4のいずれかに記載の高圧処理方法。
【請求項6】
前記低比誘電率洗浄工程における、前記高圧流体中の前記環境調整剤の含有量が1〜20重量%である請求項1ないし5のいずれかに記載の高圧処理方法。
【請求項7】
前記第2比誘電率が25゜Cにおいて20.7以下である請求項1ないし6のいずれかに記載の高圧処理方法。
【請求項8】
前記第2溶剤は、プロパノール、ブタノール、酢酸、テトラヒドロフラン(THF)およびアセトンからなる群より選ばれる少なくとも1種を含んでいる請求項1ないし6のいずれかに記載の高圧処理方法。
【請求項9】
前記高比誘電率洗浄工程における、前記エッチャントはさらに水を含み、前記エッチャント中の水の濃度が0.001〜10重量%に調製されている請求項1ないし8のいずれかに記載の高圧処理方法。
【請求項10】
前記高比誘電率洗浄工程における、前記エッチャントは1価アルコール、多価アルコール、ジメチルスルホキシド、N−メチル−2−ピロリドンおよびプロピレンカーボネートからなる群より選ばれる少なくとも1種をさらに含んでいる請求項1ないし9のいずれかに記載の高圧処理方法。
【請求項11】
前記低比誘電率洗浄工程における、前記環境調整剤中の水の濃度が0.001〜10重量%に調製されている請求項1ないし10のいずれかに記載の高圧処理方法。
【請求項12】
前記低比誘電率洗浄工程における、前記環境調整剤は1価アルコール、多価アルコール、ジメチルスルホキシド、N−メチル−2−ピロリドンおよびプロピレンカーボネートからなる群より選ばれる少なくとも1種をさらに含んでいる請求項1ないし11のいずれかに記載の高圧処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−16548(P2008−16548A)
【公開日】平成20年1月24日(2008.1.24)
【国際特許分類】
【出願番号】特願2006−184504(P2006−184504)
【出願日】平成18年7月4日(2006.7.4)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】