説明

X線CT装置及びX線CT装置による撮像方法

【課題】
X線CT装置の計測誤差を減少することにある。
【解決手段】
X線CT装置であって、該計測対象物の少なくとも二つの異なる高さに前記X線を透過させて任意の単一の前記断層像を得る手段を備える。又は、X線源から放出されるX線を計測対象物に透過させ断層像を得る手段と、該計測対象物の少なくとも二つの異なる高さに前記X線源を位置させ、前記X線を放出させて、任意の単一の前記断層像を得る手段とを備える。或いは、X線源から放出されるX線を計測対象物に透過させ断層像を得る手段と、該計測対象物の第一の高さ位置及び第二の高さ位置の断層像データに基づき、両者の高さの間の第三の高さ位置の断層像データを得る手段とを備える。
【効果】
X線CT装置及びX線CT装置による撮像方法で、計測対象物にとらわれずに、高さ方向の計測誤差を低減することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線CT装置及びX線CT装置による撮像方法に関する。
【背景技術】
【0002】
X線CT装置により撮像し、3次元画像を構築する技術に、特許文献1(特開2001−330568号公報)等があげられる。
【0003】
【特許文献1】特開2001−330568号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来のX線CT装置による撮像技術では、3次元画像を構築の際の高さ方向の誤差については考慮されていない。
【0005】
本発明の目的は、計測対象物にとらわれずに、高さ方向の計測誤差を低減することができるX線CT装置及びX線CT装置による撮像方法を提供することにある。
【課題を解決するための手段】
【0006】
X線CT装置で、計測対象物の少なくとも二つの異なる高さにX線を透過させて任意の単一の断層像を得る。
【発明の効果】
【0007】
本発明によると、計測対象物にとらわれずに、高さ方向の計測誤差を低減することができるX線CT装置及びX線CT装置による撮像方法を提供することができる。
【発明を実施するための最良の形態】
【0008】
非破壊内部3次元計測に対するニーズが高まっている。このニーズを満たすには高精度な寸法計測が可能な断層像を得ることができる産業用X線CT装置が不可欠である。そして、X線CT撮像装置を用いて計測対象物の3次元ビットマップデータを取得し、3次元ビットマップデータに対応する画像を表示し、画像に対して定義された走査経路に沿って計測プローブを走査して計測対象物の寸法を計測することにより、高精度な寸法計測を実現する装置が望まれる。ここで、3次元ビットマップデータとは、立方体又は、直方体の画素(ボクセル)で構成された3次元形状の計測対象物を表すソリッドデータであり、各ボクセルは、そのボクセルにおける計測対象物の減衰率に関する情報(CT値)を有する。
【0009】
X線CT装置により得られるCT値は、そのボクセルを占める計測対象物の平均減衰率に比例するのが寸法計測上望ましい。そして、CT値と計測対象物の平均減衰率とに比例関係があることを前提にして、境界面付近におけるボクセルのCT値の空間的な変化から、計測対象物の境界位置を推定する技術が考えられる。但し、計測対象物を高さ方向に寸法計測する場合、減衰率の異なるの物質の境界面とスライス面が平行に近くなることが多く、こうした境界面を含むボクセルでは、非線形な部分体積効果のため、CT値と平均減衰率の比例関係の成立が困難である。このため、前記技術では、計測対象物を高さ方向に寸法計測する場合、高精度な寸法計測が困難である。なお、この非線形な部分体積効果については、後述する。
【0010】
そこで、本発明の実施の形態では、スライス面に対して平行に近い境界面を含むボクセルにおいても、平均減衰率に比例するCT値が得られるよう改善した技術を説明する。
【0011】
以下、本発明によるX線CT装置および撮像方法の実施の形態を図面に基づいて説明する。
【0012】
図1は、本発明の一実施の形態による産業用X線CT装置の概略構成を示す図である。
本X線CT装置は、計測対象物2に照射するX線を発生させるX線源1と、計測対象物2を透過したX線を計測する検出器3と、計測対象物2を透過したX線強度から計測対象物2の断層像を再構成する再構成手段4と、一つの断層像を再構成するにあたり撮像する断面数を再構成手段4に入力する断面数入力手段5と、計測対象物2を透過するX線のビーム太さを再構成手段4に入力するX線ビーム太さ入力手段6を備えている。ここで高さとは、スライス面に対し垂直な方向での位置、また、X線ビーム太さとは、高さ方向でのX線ビームの幅のことである。
【0013】
X線源1は、加速器とターゲットとプリコリメータなどから構成され、計測対象物2へ照射するX線を発生させる機能を持つ。X線源1は、加速器により電子を所定の電圧で加速させた後、薄い金属板のターゲットに衝突させ、制動放射現象を利用して、X線を発生させる。ターゲットの前面に設置したプリコリメータは、鉛やタングステンなど、X線を透過させにくい物質で構成され、計測対象物2の方向にだけ、X線を照射させるための窓が設けられている。これにより、X線源1は、ビーム状に絞られたX線を計測対象物2へ照射できる。
【0014】
検出器3は、計測対象物2を挟んでX線源1の反対側に位置し、複数の放射線検出器とコリメータなどから構成され、計測対象物2を透過したX線強度を計測する機能を持つ。
検出器3の内部の各放射線検出器は、X線源1のプリコリメータの窓を臨む向きに配列状に配置され、検出したX線強度に対応する信号を出力する。この際、散乱X線や隣接する放射線検出器を透過したX線を遮蔽するために、各放射線検出器の前面及び側面に、コリメータを設置している。
【0015】
再構成手段4は、X線源1と検出器3を高さ方向に移動させるX線源移動手段7と、検出器3が計測したX線強度の高さ方向での変化率を算出するX線強度微分手段8と、一つ(単一の)の高さにおけるX線強度を補正するX線強度補正手段9と、補正したX線強度から断層像を算出する断層像算出手段10から構成され、検出器3が計測したX線強度から計測対象物2の断層像を再構成する機能を持つ。X線源移動手段7は、一つの断層像を取得するにあたり、断面数入力手段5により指定された枚数(少なくとも二つ)だけ計測対象物2を撮像するために、X線源1と検出器3を移動させる機能を持つ。X線強度微分手段8は、検出器3が計測したX線強度とX線源移動手段7から得られるX線源1の高さ位置から、X線強度の高さ方向での変化率を算出する機能を持つ。X線強度補正手段9は、複数の高さにおけるX線強度と、その変化率と、X線ビーム太さ入力手段6により与えられるX線ビーム太さを使用して、一つの高さにおけるX線強度を補正する機能を持つ。断層像算出手段10は、補正したX線強度に重畳積分法と呼ばれる積分処理を施し、単一の高さにおける断層像を算出する機能を持つ。このように、計測対象物2の少なくとも二つの異なる高さにX線源1を位置させ、X線を放出させて、任意の単一の断層像を得る手段を備えているので、計測対象物にとらわれずに(異なる減衰率からなる計測対象物であっても)、X線CT装置による高さ方向の計測誤差を低減することができる。
【0016】
なお、この断層像の再構成処理については、文献「画像処理アルゴリズム」(近代科学社)などに詳しく記載されている。断面数入力手段5は、一つの断層像を再構成するにあたり撮像する断面数を再構成手段4に入力するX線ビーム太さ入力手段6は、計測対象物2を透過するX線のビーム太さを再構成手段4に入力する。
【0017】
本実施例のX線CT装置によると、適切に容易に、X線CT装置による高さ方向の計測誤差を低減することができる。また、高さ方向の寸法計測において、計測対象物の境界面とスライス面が平行に近い場合でも、計測対象物の減衰率に比例したCT値を得ることができる。
【0018】
次に、図2及び図3を用い、X線CT装置の動作を説明する。図2は、X線CT装置の動作を示すフローチャートを示し、図3は、1枚の断層像を取得するために実際に撮像する高さを示す側面図を示す。
【0019】
本実施例によるX線CT装置の特徴は、断層像を取得したい高さでのX線強度を、その断層の上下複数の高さにおけるX線強度により、補正し、この補正したX線強度を使用して断層像を再構成することである。このため、一枚の断層像を得るために、複数の高さにおいて、計測対象物2を撮像することになる。ここでは、図3に示す高さzK における断層像を取得するために、高さzK-M から順番にzK+M まで、2M+1枚の断面を撮像する例として説明する。
【0020】
まず、ステップS1で、補正条件を設定する。設定すべき項目は、補正に使用する断面数と、X線ビームの太さである。これらの値は、断面数入力手段5,X線ビーム太さ入力手段6により、再構成手段4へ入力する。なお、これらの値の与え方は後述する。次のステップS2では、X線源移動手段7により、X線源1、及び検出器3を撮像開始高さzK-M に移動させる。続くステップS3では、X線源1からX線を放射しながら、計測対象物2を回転させ、検出器3が計測したX線強度を再構成手段4へ伝送する。
【0021】
次にステップS4にて、ステップS1で設定した断面数を撮像したか判定する。まだ必要な数の断面を撮像していなければ、ステップS6に進み、次の撮像高さにX線源1と検出器3を移動させ、再びステップS3に戻り、計測対象物2を撮像する。これらの動作を撮像した断面数が2M+1に達するまで繰り返す。
【0022】
撮像した断面数が2M+1に達すると、ステップS4からステップS5に進み、X線強度微分手段8により、高さ方向でのX線強度の変化率を算出する。このX線強度の変化率の算出は、あらゆる照射角度において、検出器3を構成する全放射線検出器が計測したX線強度に対して行う。
【0023】
ステップS7のX線強度補正手段9では、X線強度とその高さ方向の変化率とX線ビーム太さから、高さzk におけるX線強度を補正する。この補正方法については、後述する。ステップS8では、断層像算出手段10により、補正したX線強度から、高さzk における断層像を算出する。以上が、本発明によるX線CTの動作である。このように、X線源1から放出されるX線を計測対象物2に透過させ断層像を得る手段と、計測対象物2の第一の高さ位置及び第二の高さ位置の断層像データに基づき、第一の高さ位置と第二の高さの間の第三の高さ位置(Zk)の断層像データを得る手段とを備えたことにより、計測対象物2にとらわれずに(異なる減衰率からなる計測対象物であっても)、X線CT装置による高さ方向の計測誤差を低減することができる。
【0024】
次に、図4を用いX線強度補正手段9で行う補正処理を説明する。図4は、二つの異なる減衰率からなる立方体形状の計測対象物2の境界面を撮像する様子を示す側面図である。ここで、CT値と平均減衰率の比例関係を前提にして、CT値の空間的な変化から境界面の位置を求め、計測対象物2の寸法を測定すると、高さ方向の寸法計測においては、非線形な部分体積効果のため、CT値と平均減衰率は比例しない。これが、高さ方向の寸法計測における計測誤差の原因と考えられる。この非線形な部分体積効果を補正するため、本実施例によるX線CT装置は、X線強度補正手段9を備えている。
【0025】
図4に示す計測対象物2を撮像する場合の非線形な部分体積効果について説明する。計測対象物2は、1辺の長さがLの立方体であり、上部が減衰率μ1 、下部が減衰率μ2 の二つの物質から構成されている。図4は、これら二つの物質の境界面を、有限なビーム太さを持つX線で、撮像している様子である。X線ビームの中心は、境界面に位置している。このとき入射X線強度をI0 とすると、透過X線強度Iは、
I={exp(−μ1L)+exp(−μ2L)}I0/2 …(1)となる。X線ビームは有限な太さを持つため、X線ビームの上部と下部で、透過経路における減衰率が異なる。そのため、Iは減衰率μ1 とμ2 の部分を透過するX線強度の和となる。ここで、実効減衰率μe
0 exp(−μeL)=I …(2)として定義すると、Iは、一つの減衰率μe
μe=−(1/L)×ln〔{exp(−μ1L)+exp(−μ2L)}/2〕 …(3)を持つ物質で減衰するとして表せる。X線CTの断層像の再構成理論では、式(2)と同様に、Iの減衰を一つの指数関数で表している。そのため、再構成により得られるCT値は、μe に比例した量となる。
【0026】
一方、図4のX線の透過経路における計測対象物2の平均減衰率μm は、
μm=(μ1+μ2)/2 …(4)である。境界面においてはμ1 ≠μ2 であるため、式(3)と式(4)から、μe とμm は一致せず、それらの比が、μ1 とμ2 に依存して非線形に変化することが分かる。そのため、再構成により得られるCT値もμm に比例しなくなる。このように、X線ビームの太さが有限であるため、CT値が平均減衰率μm に比例しなくなる。この現象を非線形な部分体積効果という。特に、図4のようにスライス面と境界面が平行な場合、この効果が顕著になる。
【0027】
非線形な部分体積効果を補正するためには、計測したX線強度Iを、平均減衰率μm の物質を透過した場合のX線強度Im
m=Io exp(−μmL) …(5)へ補正し、Im を使用して断層像を再構成すればよい。そのため、再構成手段4は、断層像算出手段10の前処理手段として、X線強度補正手段9を備えている。
【0028】
図4の場合、IからIm への補正式は、式(2)と式(5)から
m={I/Io(1-μe/μm)}μm/μe …(6)となる。簡単のため、立方体の上部を空気層と考え、μ1 =0とすると、補正式は、
m=Io{(2I−Io)/Io}1/2 …(7)となる。ただし、式(7)は、図4の形状、及び減衰率を持つ計測対象物2にのみ適用可能な補正式である。
【0029】
一般には、計測対象物2の形状、及び減衰率は任意であるから、これらの量をX線強度の高さ方向の変化率から推定し、その推定量に基づいてX線強度を補正することになる。
以下、この方法の概略を図5を用い説明する。
【0030】
図5は、ある計測対象物2の立面図と、この計測対象物2の線分ABにおける断面図を示している。この断面において、高さz,線分AB上の座標sでの計測対象物2の減衰率をμ(z,s)、高さzでの計測対象物2の長さをL(z)とする。
【0031】
ここで、仮想的に、この計測対象物2の減衰率を一定の値μ0 に置き換えると、線分ABにおける断面は、図6のようになる。ただし、図6の断面では、高さzでの計測対象物2の長さLe(z)は、次の条件式(8)を満たすとする。
【0032】
【数1】

【0033】
このとき、図5と図6では、計測対象物2を透過するX線強度は、等しくなる。
【0034】
図6において、高さzで強度I0 のX線ビームが透過する場合を考える。ただし、X線ビーム太さは、tとする。このとき、計測対象物の平均減衰率はμ0 であるため、X線ビームの平均透過距離Lm(z)を次の式(9)で定義する。
【0035】
【数2】

【0036】
このように定義すると、式(5)と同様に、平均減衰率の物質を透過した場合のX線強度Im は、
m=Io exp(−μom(z)) …(10)となる。μ0 および、Lm(z)は、X線ビーム太さと、高さzとその上下における複数の高さで検出器3が計測したX線強度と、それらの高さ方向での変化率から求めることができる。断層像算出手段10では、このIm を使用して、断層像を再構成する。
【0037】
以上で説明した補正処理は、検出器3を構成する全放射線検出器が全ての照射角において計測したX線強度に対して、実施する。この補正処理を施したX線強度から断層像を再構成することにより、平均減衰率に比例するCT値を得ることができる。
【0038】
次に、図2のステップS1で設定する補正に使用する断面数とX線ビームの太さの与え方を説明する。
【0039】
一般には、多くの断面を使用するほど、補正効果が大きくなるが、撮像、及び補正処理に要する時間も増大する。このように、補正効果と撮像に要する時間は相反する関係であるため、測定対象物2に応じて、この量を適切に設定することが望ましい。
【0040】
補正処理が特に必要になるのは、図4のように減衰率の異なる二つの物質の境界面を撮像する場合など、高さ方向でのX線強度が急峻に変化する領域である。逆に、撮像範囲において、高さ方向での透過X線強度の変化が小さい場合、補正の必要性は少ない。本実施例では、撮像範囲におけるX線強度の変化率の大きさから、補正に使用する断面数を適切に決め設定できるよう構成している。例えば、断面数入力手段5に入力できる。つまり、計測対象物2を撮像する異なる高さの位置の数を設定する断面数設定手段を備えているので、適切に断面数を設定でき、処理に要する時間も適切に設定できる。即ち、計測対象物2の少なくとも二つの異なる高さの断層像データから任意の高さの断層像を得る本実施例のX線CT装置で、異なる高さの位置の計測数を設定する位置計測数設定手段を備えることで、装置のユ−ザーが、撮像時間や精度を考慮しつつ適切に使用することができる。更に、異なる高さの位置の計測数を設定する位置計測数設定手段に加えて、位置計測数設定手段により設定された計測数に応じた撮像時間及び計測精度を表示する手段をもうけることで、計測数に応じた撮像時間及び計測精度を事前に確認でき、その中から適切なものを選択することが出来、装置利用の簡便化及び効率化が図れる。また、ユーザーが、計測数に応じ、撮像時間と計測精度のどちらを優先させるか選択できる。
【0041】
次に、図7に示すX線源1と検出器3のコリメータ部分の側面図を用い、X線ビームの太さの設定方法を説明する。ここで、X線ビームの太さとは、計測対象物2の回転中心におけるX線ビームの高さのことである。X線ビームの太さtは、X線源1のプリコリメータの窓の高さtpc、検出器3の各放射線検出器の前面に設定したコリメータの窓の高さtc 、プリコリメータとコリメータとの距離L1 、プリコリメータと回転中心軸との距離L0 から、
t=tpc+(tc−tpc)L1/LO …(11)により、幾何学的に求まる。ユーザーは、この値をX線ビーム太さ入力手段6から入力する。
【0042】
あるいは、式(11)の代わりに、例えば円柱など、既知形状の物体の透過像を高さ方向に撮像して、検出器3が計測したX線強度の変化から、X線ビームの太さを計測しても良い。これを、図8に示す別構成のX線CT装置で説明する。この構成では、X線CT装置は、図1のX線ビーム太さ入力手段6の代わりに、X線ビーム太さ計測手段11を備える。
【0043】
X線源移動手段7によりX線源1と検出器3を移動させ、円柱形状の計測対象物2の上端面付近を撮像すると、検出器3の一つの放射線検出器において、図9のようなX線強度が計測される。X線ビームが計測対象物2あるいは、空気層だけを透過する場合、X線強度は一定になる。X線ビームが計測対象物2と空気層の両方を透過する場合、X線強度は、X線ビームの透過経路における計測対象物2と空気層の体積比率によって変化する。従って、図9に示すように、X線強度が変化する範囲の長さから、X線ビーム太さを求めることができる。X線ビーム太さ計測手段11は、検出器3が計測したX線強度を使用して上記処理を行い、X線強度補正手段9へX線ビーム太さを伝送する。X線源から放出されるX線ビームの太さをX線ビーム太さ入力手段6で入力し、X線ビームの太さの情報をX線強度補正手段9に与えることが出来、更なる計測精度向上が図れる。また、X線のビームの太さに関する量を測定する手段であるX線ビーム太さ計測手段11を備えているので、X線源から放出されるX線ビームの太さを正確に測定し、精度の良いX線ビームの太さの情報をX線強度補正手段9に与えることが出来、更なる計測精度向上が図れる。
【0044】
X線強度補正手段9でX線のビームの太さに関する量を使用することで、X線ビーム太さに起因する高さ方向での寸法計測誤差を補正でき、更なる計測精度向上が図れる。
【0045】
このように、計測対象物の少なくとも二つの異なる高さの断層像データから任意の高さの断層像を得る本実施例のX線CT装置で、計測に利用するX線のビームの太さに関するデータを設定するビーム太さ設定手段を備えているので、適切にビーム太さを確認及び設定でき、処理に要する時間も適切に設定できる。また、装置のユ−ザーが、撮像時間や精度を考慮しつつ適切に使用することができる。更に、計測に利用するX線のビームの太さに関するデータを設定するビーム太さ設定手段に加えて、ビーム太さ設定手段により設定されたビーム太さに応じた撮像時間及び計測精度を表示する手段を備えることで、計測数に応じた撮像時間及び計測精度を事前に確認でき、その中から適切なものを選択することが出来、装置利用の簡便化及び効率化が図れる。また、ユーザーが、X線ビーム太さに応じ、撮像時間と計測精度のどちらを優先させるか選択できる。
【0046】
X線源1を交換する場合、X線ビーム太さは変化する。そのため、上記のようなX線ビーム太さを推定あるいは測定する作業が、工程に含まれる必要がある。また、前述のX線ビーム太さの入力手段又は測定手段を備えているので、X線源1が交換された場合にも、新たに設置したX線源1から放出されるX線ビームの太さをX線強度補正手段9に与えることができる。
【0047】
以上の実施形態は、第3世代のX線CT装置として説明した。X線CT装置には、第3世代方式以外にも、図10,図11に示す第2世代方式,マルチスライス方式のX線CT装置がある。第2世代方式とは、計測対象物2が回転に加えて矢印の方向に並進し、寸法の大きな計測対象物2を撮像できる方式であり、またマルチスライス方式とは、検出器3に、水平方向に加えて垂直方向にも放射線検出器を並べ、同時に複数の断面を撮像できる方式である。これらの撮像方式に対しても、本発明による撮像方法を適用できることは、容易に推測できる。
【図面の簡単な説明】
【0048】
【図1】本発明の一実施の形態によるX線CT装置の構成図。
【図2】本発明によるX線CT装置の動作を示すフローチャート。
【図3】本発明によるX線CT装置において、1枚の断層像を取得するために実際に撮像する高さを示す側面図。
【図4】二つの異なる減衰率からなる立方体形状の計測対象物2の境界面を撮像する様子を示す側面図。
【図5】ある計測対象物2の立面図と、この計測対象物2の線分ABにおける断面図。
【図6】図5の計測対象物2の減衰率をμ0 に置き換えた場合の線分ABにおける断面図。
【図7】X線ビーム太さとプリコリメータ,コリメータとの幾何学的な関係を示す側面図。
【図8】本発明の別の構成によるX線CT装置の構成図。
【図9】円柱上端面を高さ方向に撮像して得られるX線強度。
【図10】第2世代方式のX線CT装置の概略構成を示す立面図、及び側面図。
【図11】マルチスライス方式のX線CT装置の概略構成を示す立面図、及び側面図。
【符号の説明】
【0049】
1…X線源、2…計測対象物、3…検出器、4…再構成手段、5…断面数入力手段、6…X線ビーム太さ入力手段、7…X線源移動手段、8…X線強度微分手段、9…X線強度補正手段、10…断層像算出手段、11…X線ビーム太さ計測手段。

【特許請求の範囲】
【請求項1】
X線源から放出されるX線を計測対象物に透過させ断層像を得るX線CT装置であって

該計測対象物の少なくとも二つの異なる高さに前記X線を透過させて任意の単一の前記
断層像を得る手段を備えたことを特徴とするX線CT装置。
【請求項2】
X線源から放出されるX線を計測対象物に透過させ断層像を得る手段と、
該計測対象物の少なくとも二つの異なる高さに前記X線源を位置させ、前記X線を放出
させて、任意の単一の前記断層像を得る手段とを備えたことを特徴とするX線CT装置。
【請求項3】
X線源から放出されるX線を計測対象物に透過させ断層像を得る手段と、
該計測対象物の第一の高さ位置及び第二の高さ位置の断層像データに基づき、該第一の
高さ位置と該第二の高さの間の第三の高さ位置の断層像データを得る手段とを備えたこと
を特徴とするX線CT装置。
【請求項4】
X線源から放出されるX線を計測対象物に透過させ断層像を得るX線CT装置による撮
像方法であって、
該計測対象物の少なくとも二つの異なる高さに前記X線を透過させ、任意の単一の前記
断層像を得て撮像することを特徴とするX線CT装置による撮像方法。
【請求項5】
計測対象物の少なくとも二つの異なる高さの断層像データから任意の高さの断層像を得
るX線CT装置による撮像方法であって、
前記異なる高さの位置の計測数を位置計測数設定手段により設定し、
設定された前記異なる高さの位置の計測数に基づき撮像することを特徴とするX線CT
装置による撮像方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−279071(P2007−279071A)
【公開日】平成19年10月25日(2007.10.25)
【国際特許分類】
【出願番号】特願2007−196864(P2007−196864)
【出願日】平成19年7月30日(2007.7.30)
【分割の表示】特願2003−358648(P2003−358648)の分割
【原出願日】平成15年10月20日(2003.10.20)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】