説明

Fターム[2G016CA03]の内容

遮断器と発電機・電動機と電池等の試験 (23,023) | 電池の試験対象 (1,349) | 自動車用 (1,056)

Fターム[2G016CA03]に分類される特許

81 - 100 / 1,056


【課題】二次電池を充電から放電に切替える場合、及び放電から充電に切替える場合のタイムラグ(即ち、無電流時間)を無くし、かつ確実に充放電を切替えることができる二次電池の充放電方法を提供する。
【解決手段】二次電池21に電力を充電する充電回路12と、二次電池21からの電力を放電する放電回路15を切替えて二次電池21の充放電を行う方法であって、充電回路12の出力側と放電回路15の入力側を芸列に接続して二次電池21への充放電を行い、かつ充電回路12から放電回路15に、二次電池21に定常充電する電流より小さい電流を流して充電回路12及び放電回路15を常時作動状態とし、二次電池21の充放電の切替を行う。 (もっと読む)


【課題】組電池における隣接する単位電池の接続部が切断された際に、安全性を確保しつつ、監視ユニットにおける通信を維持可能な電池監視装置を提供する。
【解決手段】組電池1における複数の単位電池(B1〜Bn)のうち少なくとも一部の単位電池が物理的に切断され得る接続部であるサービスプラグS/Pが切断された際に、サービスプラグS/Pを介して接続されていた単位電池に対応する監視ユニット間を遮断すると共に、サービスプラグS/Pを介して接続されていた単位電池に対応する監視ユニットにおける信号の伝達経路を、隣接する監視ユニットからマイコン20へ切り替える伝達経路切替部22を設ける。 (もっと読む)


【課題】車両に搭載された電気負荷(例えば走行用モータ)への放電および回生充電を行うバッテリを対象として、充電状態値(SOC)を推定する装置において、必要以上に回生充電や放電が制限されることの低減を図る。
【解決手段】バッテリの充放電電流の積算値に基づきSOC(i)(電流算出状態値)を算出する電流依存算出手段S10と、バッテリ電圧に基づきSOC(v)(電圧算出状態値)を算出する電圧依存算出手段S20と、車両の走行状況に応じて目標SOCを設定する目標値設定手段と、を備える。そして、両算出値SOC(i),SOC(v)のうち目標SOCに近い方の値を、推定SOCとして採用する。 (もっと読む)


【課題】リチウムイオン二次電池の内部状況を詳細に検査する方法として、充放電試験による電流,電圧等の電気的信号以外の信号を用いて、短時間で、高精度な検査方法、及び検査装置を提供する。
【解決手段】電解液と正極,負極、及びセパレータからなる電極群が一つの容器内に配置されているリチウムイオン二次電池の検査方法において、前記容器の外側にアコースティックエミッション(超音波)を検出するセンサを密着させ、前記正極と負極の間に充電もしくは放電電流を印加及び停止した際に、電池容器内で発生するアコースティックエミッションを検知する。特に、電池に異なる値の複数の充放電電流を印加及び停止した際に発生するアコースティックエミッションの振幅強度を測定し、充放電流値とアコースティックエミッション振幅強度を線形近似して、その傾きと切片の数値をもって、当該電池がこれまで充放電したサイクル回数を推定する。 (もっと読む)


【課題】二次電池の充電状態を高精度に算出する。
【解決手段】電池ECU12は、電流積算により第1SOCを算出する第1SOC算出部24と、電流履歴に基づきSOCを算出するA算出部28と、定電流での充電あるいは放電曲線を用いてSOCを算出するB算出部30を備える第2SOC算出部26を備える。補正部32は、第1SOCと第2SOCを用いて二次電池10のSOCを算出して車両ECU14に出力する。定電流での充放電時にはB算出部30を用いることでSOCの精度が確保される。 (もっと読む)


【課題】電池に関連する異常が発生した場合に故障部位を詳細に特定することができる電池システムおよびそれを備える車両を提供する。
【解決手段】電池システムは、複数の電池セルを直列接続することにより構成された電池200と、電池の充放電を実行する充放電部19と、複数の電池セルのうちのいずれかの電池セルの電圧が所定範囲外となるセル電圧異常状態を検出する電圧監視部DVと、電圧監視部DVの検出結果に応じて充放電部の充放電を制限する制御装置15とを備える。電池システムは、制御装置15による制限後に所定量の充放電が継続したときには充放電部が異常であると診断する。 (もっと読む)


【課題】機器の開発効率の悪化を抑制する電池劣化情報管理システムを提供すること。
【解決手段】
第1電池パック41〜第N電池パック41と、HV−ECU20とENG−ECU30が搭載されたハイブリッド自動車において、HV−ECU20とENG−ECU30間で各電池パック41の複数の電池劣化情報を通信するとともに、HV−ECU20とENG−ECU30で電池劣化情報を記憶しておく電池劣化情報管理システムであって、HV−ECU20は、複数の電池劣化情報としての複数のHV認識値とともに、送信するHV認識値の個数を示す個数情報を送信し、ENG−ECU30は、複数のHV認識値と共に個数情報を受信し、この個数情報とHV認識値の受信数とに基づいて、HV−ECU20から送信された複数の電池劣化情報を全て受信したことを確認する。 (もっと読む)


【課題】単位セルの個数よりも少ない電圧測定手段により、単位セル本体において、又は隣り合う単位セルとの接続部分において異常が発生した単位セルを異常単位セルとして検出することが可能な組電池の異常検出装置を提供すること
【解決手段】組電池20は、n個(nは、n≧6を満たす整数)の単位セルを直列に接続して構成される。各電圧測定器2は、直列に接続されたm個(mは、n/3≧m≧2を満たす整数)の単位セルからなるセルグループを測定対象とし、当該測定対象としたセルグループの両端電圧を測定する。電圧測定器2それぞれが測定対象とするセルグループは、組電池20の一端から他端に向けて、単位セル1個分ずつずらす。 (もっと読む)


【課題】車両に搭載された蓄電装置の劣化を確実に評価可能な劣化評価システムを提供する。
【解決手段】劣化評価システム100は、蓄電装置を搭載した車両10と、充電ステーション30と、車両10を充電ステーション30に接続するための接続ケーブル20と、サーバ40とを備える。車両10は、充電ステーション30から蓄電装置を充電することができる。充電ステーション30は、劣化評価装置32を含む。劣化評価装置32は、充電ステーション30から蓄電装置の充電時、蓄電装置の電圧や充電電流、温度などのデータを収集し、その収集データおよびサーバ40から取得される評価用データを用いて蓄電装置の劣化状態を評価する。 (もっと読む)


【課題】構成の簡略化と、それに伴うコストの低減を実現できる自動付番装置を提供する。
【解決手段】複数の組電池のセル監視ユニット間の付番出力端子と付番入力端子とをデイジーチェーン接続し、絶縁ICに替えて所定耐圧のカップリングコンデンサを用いることで前記デイジーチェーン接続したセル監視ユニット間の絶縁を行い、付番最上位のセル監視ユニットの付番入力端子を“Low”レベルに固定し、セル監視ユニットの付番入力端子の電位レベルとCAN通信線のCAN通信情報である他のセル監視ユニットのCANIDとをもとに各セル監視ユニットが自身を自動的に付番するように構成し、回路構成の簡略化と、それに伴うコストの削減を実現する。 (もっと読む)


【課題】電池の開路電圧(OCV)の推定精度を向上させることによって電池の残存容量の推定精度を向上させる。
【解決手段】バッテリを搭載した車両の制御回路100は、OCV推定部140、K調整部150、Sv推定部170を含む。OCV推定部140は、車両走行中に、バッテリの閉路電圧CCV(電圧センサの検出値)に基づいてバッテリの開路電圧OCVを推定する。K調整部150は、車両走行中に、OCV推定部140が推定するOCVを用いてバッテリ残存容量の変化量ΔSvを算出し、バッテリ電流の検出値を積算してバッテリ残存容量の最大変化量ΔSimaxおよび最小変化量ΔSiminを算出し、ΔSimin<ΔSv<ΔSimaxとなるように、OCV推定部140によるOCVの推定に用いられるゲインKを調整する。Sv推定部170は、OCV推定部140が推定するOCVを用いてバッテリ残存容量Svを算出する。 (もっと読む)


【課題】バッテリの劣化状況によらずに正確に状態判定する。
【解決手段】処理部25は、電圧センサ23で検出されたバッテリ1の出力電圧の振動を検出することでエンジンのクランキング回転数を検出する。そして、処理部25は、検出したクランキング回転数が記憶部27に格納されたエンジンの着火可能回転数以上であるか否かを判断し、その判断結果を利用してバッテリ1が正常であるか否かを判断する。 (もっと読む)


【課題】電流センサを用いずに放電電流値と電圧値に基づいてバッテリ残量を推定する。
【解決手段】グリップ開度Thに応じたデューティ比をデューティマップ48に予め設定しておくとともに、そのデューティ比によって決定される電圧値でモータ18に通電したときの電流値を放電電流マップ49に設定しておく。残容量マップ51は放電電流マップ49から検索される電流値と実測された電圧値とに基づいてバッテリ残容量を出力するように設定する。残容量を算出する基準値としての満充電量は、所定電流値でバッテリ4を放電したときの放電電圧が所定の放電終了電圧であるときの放電電力量として予め設定する。残容量マップ51は、モータ18に実際に入力された電圧およびそのときに放電電流マップ49によって算出された電流値に基づく推定電力量を満充電量から減算した値をバッテリ残容量として設定している。 (もっと読む)


【課題】発熱が少なく小型で高精度のバッテリテスタを提供する。
【解決手段】テスタ1は、抵抗R1とスイッチSW1とを有する第1の通電回路と、抵抗R2とスイッチSW2とを有する第2の通電回路と、バッテリ10の開回路電圧、R1、R2の両端電圧を測定する電圧測定回路3と、R1、R2に流れる電流を測定する電流測定回路41、42と、SW1、SW2のオン、オフを制御し電圧測定回路3で測定された電圧と電流測定回路41、42で測定された電流からバッテリ状態を推定するプロセッサ2を備えている。SW1とSW2とを、0.5msの短いパルス幅と、0.5sの長いパルス幅との2つのパルス幅で異なる時間にオン状態に制御し、開回路電圧と、SW1をオン状態に制御したときのR1の両端電圧、R1に流れる電流、SW2をオン状態に制御したときのR2の両端電圧、R2に流れる電流でバッテリ状態を推定する。 (もっと読む)


【課題】蓄電デバイスの充放電履歴を高精度に判定することができる蓄電デバイスの状態検知方法及び状態検知装置を提供する。
【解決手段】充放電停止後、ステップS6でプローブパルスを蓄電池10に印加し、ステップS9〜S11でOCV測定値を時間積分してOCV積分値Sts1_ts2を算出する。ステップS12では、時刻tcにおけるOCVを測定してこれをOCV_baseとする。ステップS13では、Sts1_ts2とOCV_baseとからOCV変化積分値DSts1_ts2を算出する。ステップS14では、予め保存されている充放電履歴判定値Th1、Th2に基づいて蓄電池10の充放電履歴を判定する。 (もっと読む)


【課題】電池パックの内部にて、電池の温度が所定の温度領域に含まれる場合に、充電電圧を低減して電池パックの安全性と長期信頼性を高める。
【解決手段】1または複数の電池と、電池の充放電を制御する制御部と、電池の温度を測定し、測定された温度情報を制御部に供給する温度検出部と、電池に対する電流路に配され、制御部によってそれぞれ制御される放電制御用スイッチおよび充電制御用スイッチとを備える。制御部は、検出された温度が充電の制御を必要とする温度領域に含まれる場合に、電池に対する充電電圧を通常充電時に比して低下させる。 (もっと読む)


【課題】電池の保存劣化を考慮することにより、電池寿命制御の精度を向上させることができる、充電制御装置、及び、充電制御方法を提供すること。
【解決手段】充放電制御装置100において、スケジューリング部104は、許容保管時間に基づいて決定された、複数の二次電池のそれぞれの充電優先度に基づいて、各二次電池に対して充電リソースを割り当てる。許容保管時間は、許容保管時間算出部102にて、許容SOH劣化量と、車両が運行計画に従って運行されるために充電処理終了時点において必要なSOC値と、当該必要SOC値に対応する、経過時間とSOH劣化量との対応関係とに基づいて算出される。許容SOH劣化量は、許容SOH劣化量算出部101にて、算出時のSOH値、車両が運行計画に従って運行された場合に二次電池が劣化する予想SOH劣化量、及び算出対象期間終了時点におけるSOHターゲット値に基づいて算出される。 (もっと読む)


【課題】不用意に電力供給先となる装置を止めてしまうことなく、正確に充電率を監視することが可能な電池システムを提供する。
【解決手段】電池システムの充電状態監視部は、主電源部の二次電池の充電状態値が書き換え可能に記憶された充電状態値記憶部74と、検出された電流値分を積算することで、現在の主電源部の充電状態値を演算し、記憶された充電状態値を書き換える第一の充電状態値演算部72と、駆動する負荷の駆動時間を計測する駆動時間計測部77と、計測された駆動時間を監視し、予め設定された補正開始時間に達したら補正開始通知を出力する駆動時間監視部78と、補正開始通知に基づいて主電源部に充放電される電流値を検査電流値に設定する検査電流値設定部と、端子間電圧を取得し、該端子間電圧に基づいて充電状態値を演算し、記憶された充電状態値を書き換える第二の充電状態値演算部73とを有する。 (もっと読む)


【課題】 浮動充電中においても、充電を中断することなく組電池の個々の蓄電池の劣化診断を短時間に精度良く計測する組電池の劣化診断方法を提供する。
【解決手段】 浮動充電中の複数の電池から構成される組電池を放電させることによって前記組電池の劣化状態を診断する方法において、その放電の放電電流が0.02CA以上の電流で、浮動充電中の電圧と放電における放電開始時を起点に0.001秒から0.01秒までの間で収集した電圧である放電中の電圧との差を求め、その差を放電電流で除算して電池の内部抵抗を求めることを特徴とする劣化診断方法である。 (もっと読む)


【課題】任意の数のバッテリセルの端子電圧を低コストで検出することが可能な電圧検出装置、それを備えたバッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置を提供する。
【解決手段】低電位計測LSIチップ20にN個のバッテリセルB1〜B5が接続され、高電位計測LSIチップ30にバッテリセルB1〜B5よりも高い電位を有する複数のバッテリセルB6〜B8が接続される。高電位計測LSIチップ30の差動増幅器33により検出された差動電圧を(N+1)番目のバッテリセルB6の端子電圧の代わりに受けるように、セレクタSA2の入力端子が高電位計測LSIチップ30の差動増幅器33の出力端子に接続される。低電位計測LSIチップ20の基準電位VSS1に等しい電位が与えられるように、セレクタSA1の入力端子がバッテリセルB6のマイナス電極に接続される。 (もっと読む)


81 - 100 / 1,056