説明

Fターム[2G016CC03]の内容

Fターム[2G016CC03]に分類される特許

81 - 100 / 1,021


【課題】蓄電モジュールにおける電池毎の電圧値と、電流経路に流れる電流値とを同時に検出する。
【解決手段】蓄電モジュールは、一例として、電池毎の電圧値を示す第1のアナログデータを第1のデジタルデータに変換する第1の変換器と、複数の電池を流れる電流値を示す第2のアナログデータを第2のデジタルデータに変換する第2の変換器とを備えており、第1のアナログデータと第2のアナログデータとは、同一タイミングのデータである。 (もっと読む)


【課題】電池劣化情報を適切に管理できる電池劣化情報管理システムを提供すること。
【解決手段】蓄電池40と、二つの電子装置(HV−ECU20とENG−ECU30)が搭載されたハイブリッド自動車において、二つの電子装置間で蓄電池40の電池劣化情報を通信するとともに、二つの電子装置で電池劣化情報を記憶しておく電池劣化情報管理システムであって、HV−ECU20は、ENG−ECU30のみが交換されたものであると判定された場合(S13、S14でNO判定、S15でYES判定)は電池劣化情報の更新を行わず、自身(HV−ECU20)のみが交換されたものであると判定された場合(S13でNO判定、S14でYES判定)は自身が記憶している電池劣化情報を受信した電池劣化情報に更新する(S18)。 (もっと読む)


【課題】非水電解質二次電池の寿命性能の急激な低下が生じることを事前に察知することができる電池寿命劣化推定装置を提供する。
【解決手段】電池容量の急激な低下を招く状態を寿命の劣化状態として推定する電池寿命劣化推定装置100であって、第一時点での負極電位特性に現れる複数の電位平坦部のそれぞれに対応する電気量から得られる値を取得する第一取得部110と、第二時点での電池電圧特性に現れる複数の電圧平坦部のそれぞれに対応する電気量から得られる値を取得する第二取得部120と、取得された値を用いて第二時点での負極電位特性で示される可逆容量推定値を算出する算出部130と、可逆容量推定値から、第二時点での電池電圧特性で示される可逆容量推定値に対応する電気量を示す値を差し引いた値が所定の閾値を下回った場合に寿命の劣化状態であると判定する寿命判定部140とを備える。 (もっと読む)


【課題】電池の交換時期の精度の向上を図ることができる上に、製作費用の抑制を図ることができる電池寿命推定装置の提供。
【解決手段】本発明は、計数手段と、温度センサと、配分率算出手段と、寿命算出手段と、比較手段とを備えている。計数手段は、電池の使用開始から現在までの時間を計数する。温度センサは、電池の周囲の温度を検出する。配分率算出手段は、温度センサの検出温度に基づき、電池の使用開始から現在までの温度毎の使用時間の配分率をそれぞれ求める。寿命算出手段は、配分率算出手段で求めた配分率と、電池の温度毎に予め求めてある寿命時間とに基づき、電池の寿命時間を算出する。比較手段は、計数手段の計数時間を寿命算出手段が算出する寿命時間と比較し、計数時間が算出寿命時間以上になったときにその旨の出力信号を出力する。 (もっと読む)


【課題】
本実施形態の算出方法は、より正確に電池の劣化状態を算出することを目的とする。
【解決手段】
本算出方法は、本実施形態の算出方法は、電池の充電量とそのときに発生している電池電圧とを対応させて記憶する測定値データベースと、電池内に含まれる複数の活物質の充電量と電圧の関係を表す関数を記憶する関数情報データベースと、を参照して前記関数情報データベースに格納された関数の活物質の量を変数として前記測定値データベースに記憶された電池電圧を回帰計算する演算機能を実現させる。 (もっと読む)


【課題】組電池における隣接する単位電池の接続部が切断された際に、安全性を確保しつつ、監視ユニットにおける通信を維持可能な電池監視装置を提供する。
【解決手段】組電池1における複数の単位電池(B1〜Bn)のうち少なくとも一部の単位電池が物理的に切断され得る接続部であるサービスプラグS/Pが切断された際に、サービスプラグS/Pを介して接続されていた単位電池に対応する監視ユニット間を遮断すると共に、サービスプラグS/Pを介して接続されていた単位電池に対応する監視ユニットにおける信号の伝達経路を、隣接する監視ユニットからマイコン20へ切り替える伝達経路切替部22を設ける。 (もっと読む)


【課題】単位セルの個数よりも少ない電圧測定手段により、単位セル本体において、又は隣り合う単位セルとの接続部分において異常が発生した単位セルを異常単位セルとして検出することが可能な組電池の異常検出装置を提供すること
【解決手段】組電池20は、n個(nは、n≧6を満たす整数)の単位セルを直列に接続して構成される。各電圧測定器2は、直列に接続されたm個(mは、n/3≧m≧2を満たす整数)の単位セルからなるセルグループを測定対象とし、当該測定対象としたセルグループの両端電圧を測定する。電圧測定器2それぞれが測定対象とするセルグループは、組電池20の一端から他端に向けて、単位セル1個分ずつずらす。 (もっと読む)


【課題】機器の開発効率の悪化を抑制する電池劣化情報管理システムを提供すること。
【解決手段】
第1電池パック41〜第N電池パック41と、HV−ECU20とENG−ECU30が搭載されたハイブリッド自動車において、HV−ECU20とENG−ECU30間で各電池パック41の複数の電池劣化情報を通信するとともに、HV−ECU20とENG−ECU30で電池劣化情報を記憶しておく電池劣化情報管理システムであって、HV−ECU20は、複数の電池劣化情報としての複数のHV認識値とともに、送信するHV認識値の個数を示す個数情報を送信し、ENG−ECU30は、複数のHV認識値と共に個数情報を受信し、この個数情報とHV認識値の受信数とに基づいて、HV−ECU20から送信された複数の電池劣化情報を全て受信したことを確認する。 (もっと読む)


【課題】電池の劣化により変化する満充電容量Qmaxと内部抵抗の算出時間の短縮を可能とすること。
【解決手段】半導体集積回路には、電池電流情報と電池電圧情報とがそれぞれ供給可能とされる。半導体集積回路は、メモリ機能、電流積算機能765、電圧ベース充電量演算機能764、電流ベース充電量演算機能766、比較判定機能767、補正機能769、抵抗劣化係数出力機能768を具備する。メモリ機能719は、電池の満充電容量Qmaxと電池の内部抵抗劣化係数CDegとの関係を格納する。比較判定機能767によって比較される電圧ベース充電量SOC_Vと電流ベース充電量SOC_Iとが実質的に一致すると判定された状態で補正機能769から出力される満充電容量Qmaxと抵抗劣化係数出力機能768から出力される内部抵抗劣化係数CDegをメモリ機能に格納する。 (もっと読む)


【課題】車両に搭載された蓄電装置の劣化を確実に評価可能な劣化評価システムを提供する。
【解決手段】劣化評価システム100は、蓄電装置を搭載した車両10と、充電ステーション30と、車両10を充電ステーション30に接続するための接続ケーブル20と、サーバ40とを備える。車両10は、充電ステーション30から蓄電装置を充電することができる。充電ステーション30は、劣化評価装置32を含む。劣化評価装置32は、充電ステーション30から蓄電装置の充電時、蓄電装置の電圧や充電電流、温度などのデータを収集し、その収集データおよびサーバ40から取得される評価用データを用いて蓄電装置の劣化状態を評価する。 (もっと読む)


【課題】二次電池の充電状態を高精度に算出する。
【解決手段】電池ECU12は、電流積算により第1SOCを算出する第1SOC算出部24と、電流履歴に基づきSOCを算出するA算出部28と、定電流での充電あるいは放電曲線を用いてSOCを算出するB算出部30を備える第2SOC算出部26を備える。補正部32は、第1SOCと第2SOCを用いて二次電池10のSOCを算出して車両ECU14に出力する。定電流での充放電時にはB算出部30を用いることでSOCの精度が確保される。 (もっと読む)


【課題】シャットダウンして保存された後にシャットダウンから復帰した場合、実際の残容量とのずれが少ない残容量を算出することが可能な残容量算出方法、パック電池の出荷前調整方法、残容量算出装置及びパック電池を提供する。
【解決手段】電源IC6と3.3V電源端子との間に接続されたMOSFET61をオフ状態にすることにより、RSOC(残容量比)を算出する制御部5が含まれる制御基板100がシャットダウンされる。制御基板100がシャットダウンから復帰した場合、最大セル電圧をOCV(開放端子電圧)として特定し、OCVの高/低とRSOCの大/小とを関連付ける一定の放電特性と照合して、放電特性を近似する二次曲線を特定し、特定した二次曲線が表す二次関数に対し、特定した最大セル電圧を代入してRSOCを算出する。 (もっと読む)


【課題】電圧、電流、温度の測定データを利用するだけで劣化予測が可能な電池パックと、電池パックを使用する電子機器、電力システムおよび電動車両を提供する。
【解決手段】満充電容量算出部は、1または複数の電池の満充電の状態から所定の放電容量を検出した時までの期間の電力量を求め、電力量から前記電池の劣化の度合いを算出し、算出された劣化の度合いによって補正された満充電容量を算出する。満充電容量更新部は、補正された満充電容量が現在の設定満充電容量より小の場合に、補正された満充電容量によって、設定満充電容量を更新する。満充電容量算出部および満充電容量更新部は、電池パックに搭載されたマイクロコンピュータの機能により実現される。 (もっと読む)


【課題】発熱が少なく小型で高精度のバッテリテスタを提供する。
【解決手段】テスタ1は、抵抗R1とスイッチSW1とを有する第1の通電回路と、抵抗R2とスイッチSW2とを有する第2の通電回路と、バッテリ10の開回路電圧、R1、R2の両端電圧を測定する電圧測定回路3と、R1、R2に流れる電流を測定する電流測定回路41、42と、SW1、SW2のオン、オフを制御し電圧測定回路3で測定された電圧と電流測定回路41、42で測定された電流からバッテリ状態を推定するプロセッサ2を備えている。SW1とSW2とを、0.5msの短いパルス幅と、0.5sの長いパルス幅との2つのパルス幅で異なる時間にオン状態に制御し、開回路電圧と、SW1をオン状態に制御したときのR1の両端電圧、R1に流れる電流、SW2をオン状態に制御したときのR2の両端電圧、R2に流れる電流でバッテリ状態を推定する。 (もっと読む)


【課題】電池の開路電圧(OCV)の推定精度を向上させることによって電池の残存容量の推定精度を向上させる。
【解決手段】バッテリを搭載した車両の制御回路100は、OCV推定部140、K調整部150、Sv推定部170を含む。OCV推定部140は、車両走行中に、バッテリの閉路電圧CCV(電圧センサの検出値)に基づいてバッテリの開路電圧OCVを推定する。K調整部150は、車両走行中に、OCV推定部140が推定するOCVを用いてバッテリ残存容量の変化量ΔSvを算出し、バッテリ電流の検出値を積算してバッテリ残存容量の最大変化量ΔSimaxおよび最小変化量ΔSiminを算出し、ΔSimin<ΔSv<ΔSimaxとなるように、OCV推定部140によるOCVの推定に用いられるゲインKを調整する。Sv推定部170は、OCV推定部140が推定するOCVを用いてバッテリ残存容量Svを算出する。 (もっと読む)


【課題】電池パックの内部にて、電池の温度が所定の温度領域に含まれる場合に、充電電圧を低減して電池パックの安全性と長期信頼性を高める。
【解決手段】1または複数の電池と、電池の充放電を制御する制御部と、電池の温度を測定し、測定された温度情報を制御部に供給する温度検出部と、電池に対する電流路に配され、制御部によってそれぞれ制御される放電制御用スイッチおよび充電制御用スイッチとを備える。制御部は、検出された温度が充電の制御を必要とする温度領域に含まれる場合に、電池に対する充電電圧を通常充電時に比して低下させる。 (もっと読む)


【課題】蓄電器の充電率を正確に推定できる充電率推定装置を提供すること。
【解決手段】充電率の変化に対する開回路電圧の変化がフラットな領域を含む特性を有した蓄電器の充電率を、開回路電圧及び前記特性に基づいて推定する充電率推定装置は、電圧センサが検出した蓄電器の端子間電圧及び蓄電器の充放電電流の各変化量に基づいて、蓄電器の内部抵抗を算出する内部抵抗算出部と、端子間電圧、充放電電流及び内部抵抗に基づいて、蓄電器の開回路電圧を算出するOCV算出部と、所定期間の充放電電流の積算値に基づいて蓄電器の充電率の変化量を算出するSOC変化量算出部と、充電率の変化量に対する所定期間での開回路電圧の変化率が第1のしきい値未満であれば、OCV算出部が算出した開回路電圧が蓄電器の特性が示すフラット領域の開回路電圧に近づくよう電圧センサのオフセット誤差を補償するオフセット誤差補償部とを備える。 (もっと読む)


【課題】蓄電デバイスの充放電履歴を高精度に判定することができる蓄電デバイスの状態検知方法及び状態検知装置を提供する。
【解決手段】充放電停止後、ステップS6でプローブパルスを蓄電池10に印加し、ステップS9〜S11でOCV測定値を時間積分してOCV積分値Sts1_ts2を算出する。ステップS12では、時刻tcにおけるOCVを測定してこれをOCV_baseとする。ステップS13では、Sts1_ts2とOCV_baseとからOCV変化積分値DSts1_ts2を算出する。ステップS14では、予め保存されている充放電履歴判定値Th1、Th2に基づいて蓄電池10の充放電履歴を判定する。 (もっと読む)


【課題】電池の保存劣化を考慮することにより、電池寿命制御の精度を向上させることができる、充電制御装置、及び、充電制御方法を提供すること。
【解決手段】充放電制御装置100において、スケジューリング部104は、許容保管時間に基づいて決定された、複数の二次電池のそれぞれの充電優先度に基づいて、各二次電池に対して充電リソースを割り当てる。許容保管時間は、許容保管時間算出部102にて、許容SOH劣化量と、車両が運行計画に従って運行されるために充電処理終了時点において必要なSOC値と、当該必要SOC値に対応する、経過時間とSOH劣化量との対応関係とに基づいて算出される。許容SOH劣化量は、許容SOH劣化量算出部101にて、算出時のSOH値、車両が運行計画に従って運行された場合に二次電池が劣化する予想SOH劣化量、及び算出対象期間終了時点におけるSOHターゲット値に基づいて算出される。 (もっと読む)


【課題】均圧容器に封入された群電池の各セルの電圧値の均等化を、群電池が均圧容器に封入されたまま行い、群電池の充電状態を最適に保つこと。
【解決手段】群電池21〜24は、電圧・温度測定部61と、バランス回路51〜58と、通信制御部62と、を有し、群電池制御部は、個々の通信制御部25から送信された測定結果を受信し、その測定結果に基づいて、個々の群電池21〜24のセル40〜47の電圧値が全ての群電池21〜24において均等になるように、個々の群電池21〜24の通信制御部62に放電実行指示を送信するようにする。 (もっと読む)


81 - 100 / 1,021