説明

Fターム[2G043GA25]の内容

蛍光又は発光による材料の調査、分析 (54,565) | 制御の対象 (3,228) | 分析手法 (86)

Fターム[2G043GA25]に分類される特許

1 - 20 / 86


【課題】試料から放出された光を含む画像において、経時的に輝度値が変化する画素を特定すること。
【解決手段】この光測定装置1は、試料からの光を測定する光測定装置であって、試料からの光を含む二次元光像の動画像データを取得する動画像取得部40と、動画像データに対して解析処理を行う解析処理部51とを備える。解析処理部51は、複数のウェルに対応する領域を構成する複数の画素における輝度値の経時変化を示す輝度値データを取得する輝度値データ取得部52aと、輝度値データから輝度値のピーク値とボトム値とを抽出する輝度値抽出部52bと、ピーク値とボトム値とに基づいて輝度値の変化の状態を評価する評価値を計算し、評価値の繰り返し状態に基づいて複数の画素から解析の対象となる対象画素を特定する画素特定部52cと、を含む。 (もっと読む)


【課題】複数の蛍光色素により標識された微小粒子を複数の光検出器によってマルチカラー測定する場合に、各蛍光色素からの蛍光強度を正確に算出してユーザに提示する技術の提供。
【解決手段】蛍光波長帯域の重複する複数の蛍光色素により多重標識された微小粒子に光を照射し、励起された蛍光色素から発生する蛍光を受光波長帯域の異なる光検出器で受光する測定手順と、各光検出器の検出値を補正演算して各蛍光色素からの蛍光強度を算出する際に、算出される蛍光強度値に所定の制約条件を設けて補正演算を行う算出手順と、を含む蛍光強度補正方法を提供する。 (もっと読む)


【課題】 固体試料中に含まれる様々な種類の元素の濃度を容易に算出することができる発光分析装置を提供する。
【解決手段】 固体試料6の分析面6aと対向電極3との間で放電を行うことで発生した発光光が導入されることにより、発光光を、各元素に特有な波長を有する輝線スペクトルに分光する分光器4と、各輝線スペクトルの強度をそれぞれ検出する複数の受光素子5aを有する光検出器5とを備える発光分析装置1であって、アルゴリズムを記憶する記憶部22と、固体試料6の母材となる元素の種類と、測定対象とする元素の種類及びその種類の元素の予想濃度範囲とが入力されることにより、アルゴリズムに基づいて、受光素子選択方法と放電発光条件と元素濃度算出条件とを決定し、決定した受光素子選択方法と放電発光条件と元素濃度算出条件とを用いて、測定対象とした種類の元素の濃度を算出する制御部21とを備える。 (もっと読む)


【課題】 本発明は、一般的な発光条件では検知不可能であり、所定の条件(励起物質が励起する二光子励起により発光)で蛍光発光する樹脂組成物を含有するインキ組成物に対して、発光ピークを確実に検知することにより真偽判別を行うことを提案する。
【解決手段】 第1の波長域の紫外線を照射可能な第1の光源及び第2の波長域の紫外線を照射可能な第2の光源を少なくとも備えた光源部と、第2の光源によって第2の波長域の紫外線が照射された際の印刷模様を読み取る読取部と、読取部によって読み取った結果を解析して真偽を判定するデータ処理部と、光源部からの光照射及び発光検出タイミング等、各部の制御を行う制御部を少なくとも備えた特殊発光を有する印刷物の真偽判別装置。 (もっと読む)


【課題】蛍光体の濃度分布を含む光断層画像を得るときの処理負荷の低減、装置の簡略化を可能とする。
【解決手段】計測部では、検体に励起光を照射して、これにより得られる蛍光の強度の計測データを取得する。また、画像処理部では、蛍光体の濃度分布に基づく蛍光体の吸収係数の初期値を設定すると、予め設定されている検体の吸収係数及び拡散係数に基づいて蛍光強度分布を演算し、計測データと演算結果を比較する(ステップ104〜108)。このときに、一致していなければ、数学的な最適化手法による光拡散方程式を用いた逆問題計算を行うことにより誤差を最小とする蛍光体の吸収係数を推定し、この吸収係数に基づいた濃度分布から蛍光の強度分布の演算、誤差の評価を反復し、誤差が最小となる濃度分布を取得する(ステップ102〜118)。 (もっと読む)


【課題】被測定物に含まれる僅かな濃度のシリカを、短時間に、かつ高精度、高感度に分
析する方法を提供する。
【解決手段】最初に、この試料容器にフッ化水素酸を含む処理液を注入する(Sa1)。
次に、この処理液を注入した試料容器を熱処理する(Sa2)。この熱処理は、例えば、
処理液を注入した試料容器をホットプレート上に載置し、50〜300℃の範囲で1時間
以上加熱するのが好ましい。 (もっと読む)


【課題】ガス濃度の分布を定量的に表すことができるガス濃度分布検出方法及びガス濃度分布検出装置を提供する。
【解決手段】光吸収法により算出した測定対象ガスGの平均ガス濃度Cと、測定光の光路線Lに直交する方向から測定光を撮影して測定対象ガスGの蛍光画像Pから検出した測定対象ガスGの相対的な蛍光強度分布に基づいて、光路線L上の各位置における測定対象ガスGの絶対的なガス濃度を算出し、測定対象ガスGのガス濃度分布を定量的に表す。 (もっと読む)


【課題】金属ナノ構造体内において特定の波長で励起したプラズモンの密度分布を評価することを可能にする。
【解決手段】励起光が照射されると発光するかまたはラマン散乱光を発生する光発生膜が金属構造体上に形成された試料の表面に第1照射光を照射して前記金属構造体の表面にプラズモンを励起するとともに、第2照射光を照射して前記光発生膜から光を発光させるかまたは前記ラマン散乱光を発生させ、かつ金属粒子が先端に設けられたプローブで前記試料の表面を走査するステップと、前記プローブで走査しながら前記光発生膜から出射した光を受光するステップと、受光した光の画像を取得するステップと、を備えている。 (もっと読む)


【課題】ポッケルス素子等を用いることなく、大気中の被測定領域の空間電界強度を正確に測定する。空間電界強度の遠隔計測を行う。
【解決手段】レーザー光15を出力するレーザー装置16と、レーザー光15を大気中の被測定領域Aに照射してプラズマを発生させる照射装置と、プラズマの発光を受光してプラズマの発光強度の測定値を得る受光装置と、プラズマ周囲の電界強度に対するプラズマの発光強度について予め求められた相関関係を利用して、プラズマの発光強度の測定値から被測定領域の電界強度を解析する解析装置24とを備えるものとした。また、レーザー装置16は超短パルスレーザー光15を出力するレーザー装置であり、照射装置は超短パルスレーザー光15を大気中の被測定領域Aに照射してフィラメント14を発生させる照射装置であり、プラズマはフィラメント14の発生により生じるプラズマであることが好ましい。 (もっと読む)


眼等の層システムにおける蛍光を正確にプロットするための方法。本発明の目的は、層システムにおける蛍光を可能な限り簡便に且つ少ない労力で評価するための方法を提供することにあり、該方法により蛍光の総合的な減衰挙動を非常に正確に評価することができ、且つ同時に層システムの個々の蛍光の発生場所を推定することができる。本発明に従えば、層システムの個々の層における蛍光について、それぞれの層における蛍光の開始時間示す層特異的時間依存性パラメータを求め、蛍光の総合的な減衰挙動を計算するためのモデル関数において考慮することによって、層システムの個々の層における蛍光の起点(tc)がそれぞれ決定される。本発明は、生物学や医学、生産工学等、層構造を有する物体の分析に応用される。 (もっと読む)


システムと方法は、薬剤の取得したスペクトルから特徴抽出を実施する。薬剤の取得したスペクトルは、分光計を用いて測定される。取得したスペクトルは、プロセッサを用いて分光計から取得される。分光計のシステム応答関数は、プロセッサを用いて、取得したスペクトルから除去される。取得したスペクトルの強度は、プロセッサを用いて、所定のスケールに正規化される。プロセッサを用いて、取得したスペクトルから蛍光が除去される。最後に、薬剤の抽出した特徴は、プロセッサを用いて、取得したスペクトルの残部から取得される。薬剤の取得したスペクトルが薬剤を保持する容器を介して分光計によって測定される場合は、プロセッサを用いて、容器のスペクトルが取得したスペクトルの残部から除去され、薬剤の抽出した特徴が生成される。 (もっと読む)


【課題】低分子液晶の欠陥部位を蛍光表示することができる蛍光性プローブを提供すること。
【解決手段】
本発明の蛍光性プローブは、シェル部に低分子液晶と相溶性を示す部分を有し、コア部に蛍光性官能基を有するコア−シェル型分岐状高分子からなり、低分子液晶の欠陥部位に優先的に濃縮されることを特徴とする。また、本発明の前記欠陥部位を表示可能とする方法は、前記コア-シェル型分岐状高分子を液晶に添加し、これを該液晶の等方相温度以上
の温度に加熱し、次いで液晶相を形成する温度まで冷却することによって、等方相中に分散した前記分岐状高分子を該液晶の欠陥部位に優先的に濃縮することを特徴とする。 (もっと読む)


【課題】 検出対象の分子以外の夾雑物の存在下でも、夾雑物の存在に起因する背景光や非特異的な反応の影響を受けずに、一分子蛍光分析技術を用いた分子の特異的な結合の検出及び観測を行えるようにすること。
【解決手段】 本発明の方法は、蛍光標識された第一の分子を含む第一の試料と、第一の分子と特異的に結合するか否かが判定される第二の分子を含む第二の試料(又は第一の分子と特異的に結合する第二の分子が存在するか否かが判定される第二の試料)との混合試料溶液へ、第二の分子に特異的に結合する第三の分子が固相化されたビーズを添加し、その混合試料溶液中の第一の分子の蛍光標識の蛍光強度に基づいて、第一の分子がビーズ上に固定されているか否かを判定する。第一の分子がビーズ上に固定されている判定された場合には、第一の分子が第二の分子に特異的に結合した(又は第二の試料に第二の分子が存在した)と判定する。 (もっと読む)


【課題】微粒子の粒子径が励起レーザ光の波長よりも短くても、励起効率を低下させることなく、微粒子を分析すること。
【解決手段】分析対象の微粒子100を含む流体と微粒子100とは異なる物質で構成された媒体ガスが存在するガス領域74内に励起レーザ光を照射して、ガス領域74内に存在する流体と媒体ガスをプラズマ化するパルスレーザ器と、ガス領域74内でプラズマ化された流体と媒体ガスが励起レーザプラズマ状態から元のエネルギー状態に戻るときに発生する光を検出して分光する分光器66と、分光器66で分光された光を撮像して画像信号を生成するCCDカメラ68と、CCDカメラ68からの画像信号を画像処理して微粒子100の成分を分析するコンピュータ70を備えている。 (もっと読む)


【課題】生体での分布する化学発光物質や蛍光物質の画像をブレなく十分な露出量で撮影する。
【解決手段】蛍光物質が投与された生体3に麻酔ガスを吸引させるために装着されるマスク35に呼吸センサ36を組み込んである。また、拍動センサ37が生体3に装着される。タイミング制御部33は、イメージセンサ21が光電変換し電荷を蓄積する状態を維持している下で、呼吸センサ36と拍動センサ37とからの各信号に基づいて、生体3の呼吸状態、拍動状態がいずれも特定の状態となるごとに、上部光源16または底部光源17をオンとして、励起光を生体3に照射し、蛍光物質から蛍光を発生させ。この蛍光をイメージセンサ21で受光させる。 (もっと読む)


【課題】エレクトロルミネッセンス素子の発光中心の深さ方向分布および面内分布を非破壊で解析可能なエレクトロルミネッセンス素子の3次元発光中心分布の解析方法を提供する。
【解決手段】スペクトルイメージング分光装置を用いて、解析対象のエレクトロルミネッセンス素子の素子発光面内におけるエレクトロルミネッセンススペクトルのマッピング測定を行い、エレクトロルミネッセンススペクトルマップを作成するステップと、エレクトロルミネッセンス素子の深さ方向に単一発光領域を予測して分布関数を設定し、該分布関数を構成するパラメータがエレクトロルミネッセンススペクトルの測定値を満足するように光多重干渉を考慮した計算法を用いてフィッティングを行い、発光中心の最適な素子深さ方向分布および素子面内分布を推定するステップとを含むことを特徴とする。 (もっと読む)


【課題】温度分布などが存在する条件下でも内部EGR濃度の定量測定が可能な既燃ガス分布挙動計測方法を提供する。
【解決手段】内燃機関における既燃ガス分布挙動計測方法であって、燃焼によって燃焼前より高い蛍光を発する燃焼生成物を生成する蛍光発光前駆物質と、ベース燃料と、燃焼生成物に相当する基準物質とを含む燃焼前混合気を燃焼させて、その燃焼後の燃焼後混合気が発する蛍光強度を計測する第一計測工程と、蛍光発光前駆物質とベース燃料とを含む燃焼前混合気を燃焼させて、その燃焼後の燃焼後混合気が発する蛍光強度を計測する第二計測工程と、を含み、第二計測工程の蛍光強度と第一計測工程および第二計測工程の蛍光強度の差との蛍光強度比分布と、第一計測工程の基準物質の濃度と第二計測工程の燃焼生成物の濃度との濃度比と、平均内部EGR率とから、内部EGR率分布を求める。 (もっと読む)


【課題】多数の試料溶液における凝集の有無を検出する場合であっても、一分子蛍光分析法を用いて、信頼性の高い検出結果を得ることができる分子の凝集検出方法、及び該方法を用いた凝集阻害剤のスクリーニング方法の提供。
【解決手段】蛍光標識分子と非蛍光標識分子との凝集を検出する方法において、(a)蛍光標識分子と非蛍光標識分子を混合して試料溶液を調製する工程と、(b)一分子蛍光分析法により、前記工程(a)において調製された試料溶液中の蛍光標識分子の並進拡散時間、蛍光強度、蛍光偏光度、及び数量からなる群より選択される1以上を求めることにより、蛍光標識分子と非蛍光標識分子との凝集の有無を判別する工程とを有し、前記工程(a)において調製される試料溶液中の非蛍光標識分子の濃度が40μM以下であることを特徴とする、分子の凝集検出方法、及び該方法を用いた凝集阻害剤のスクリーニング方法。 (もっと読む)


【課題】LIBS法を用いて、固体試料に含まれる元素を高い精度で定量する方法を提供すること。
【解決手段】以下の工程(1)〜(3)をこの順で含む、固体試料に含まれる元素の定量方法:
(1)所定の条件が満たされるまで、以下の工程a、bを繰り返す工程、
工程a.固体試料にレーザーパルス光を照射する工程、
工程b.前記レーザーパルス光の照射により固体試料から発生したプラズマ発光を分光し、定量元素固有の波長の光の強度を測定する工程、
(2)工程(1)の工程bにおいて測定した定量元素固有の波長の光の強度を積算する工程、(3)工程(2)で求められた定量元素固有の波長の光の強度の積算値に基づいて、前記固体試料に含まれる定量元素の量を決定する工程。 (もっと読む)


【課題】試料の種類や分析目的に応じて適切な数の分析個所を適切な位置に定め、発光分析を実行できるようにする。
【解決手段】試料の分析面上に設定する分析個所の数、初期的な位置、欠陥部が存在した場合の回避方法などが相違する複数の抽出アルゴリズムA〜Dを抽出情報記憶部22に記憶させておく。連続分析に先立ち、オペレータが各試料に付与された試料番号に対応付けて該試料の分析に使用する抽出アルゴリズムを入力すると、この情報が選択情報記憶部24に保持される。分析実行時に試料6が与えられると試料識別部18がその試料番号を認識し、が層処理部21はCCDカメラ12により得られた試料6の分析面の画像により欠陥部を検出する。分析個所抽出処理部22は試料番号に対応した抽出アルゴリズムを読み出し、該アルゴリズムに従って且つ欠陥部を避けるように1乃至複数の分析個所を抽出する。 (もっと読む)


1 - 20 / 86