説明

Fターム[2K002EB15]の内容

光偏向、復調、非線型光学、光学的論理素子 (16,723) | 制御部の構造と回路 (633) | 制御回路 (351) | 検知、フィードバック (252)

Fターム[2K002EB15]に分類される特許

21 - 40 / 252


【課題】光部品の設定の要求精度が低く、簡素な光部品で構成できるコヒーレント光受信装置を提供することを目的とする。
【解決手段】本発明に係るコヒーレント光受信装置は初期位相と位相揺らぎが揃った複数の局発光を用い、複数の局発光と信号光とのそれぞれの中間周波数信号をそれぞれ中間周波数信号と同じ周波数かつ互い位相揺らぎが揃い乗ずる際の初期位相が所定の関係である正弦波信号をそれぞれ乗ずるか、中間周波数信号の周波数差の自然数分の1の周期で中間周波数信号をサンプリングし、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が位相2πq/K、(q:0〜K−1)の出力となるように調整することで、光90度位相ハイブリッド回路を用いず、かつ1シンボル時間の半分以下の周期での位相変調による課題も引き起こすことなく、コヒーレント光検波を実現することとした。 (もっと読む)


【課題】波長変換部から高出力で出力光を出射する際に、出力される高調波のビーム径の変動の少ないレーザ光源装置を提供する。
【解決手段】直線偏光されたレーザ光を出力する基本波レーザ光源と前記レーザ光を波長変換して高調波レーザ光を出力する周期的分極反転構造を有する波長変換部とを備えるレーザ光源装置において、前記直線偏光されたレーザ光のうち前記波長変換部の分極反転方向に垂直な方向と一致する偏光成分のみを通過するように、前記基本波レーザ光源と前記波長変換部との間に前記偏光分離素子を配置するレーザ光源装置。 (もっと読む)


【課題】変換効率の良い波長変換装置及び紫外光生成レーザ装置を提供すること。
【解決手段】光入射面と、光出射面とを備え、前記光入射面から入射した光の第2高調波光を発生する波長変換素子と、前記波長変換素子に入射する光が通る入射部と、前記波長変換素子から出射した光が通る出射部とを備える液体セルと、前記波長変換素子と共に前記液体セル内に収容されて、かつ前記波長変換素子が少なくとも前記光出射面が液体と接するように浸漬される浸漬液と、を備えてもよい。 (もっと読む)


【課題】レーザ光のスポット位置の調節が可能なレーザ光源装置を提供する。
【解決手段】光源と、前記光源から発射するレーザ光を集光する集光レンズ部と、前記レーザ光を偏向する光偏向素子と、前記集光レンズ部により集光された前記レーザ光を伝搬する光学素子を有するレーザ光源装置であって、前記光偏向素子は、液晶素子、音響光学素子、電気光学素子のいずれかにより形成されており、前記光偏向素子に印加される電圧によって生じる電位分布に応じて前記レーザ光が前記光学素子に集光する方向を偏向するレーザ光源装置を提供することにより上記課題を解決する。 (もっと読む)


【課題】波長変換光が微弱であり且つ光強度がMHzを超えるような高周波で変調されるような用途でも半導体レーザを適正に駆動する。
【解決手段】CPU11は、微弱な波長変換光を検出する第2の光検出器6の出力信号を増幅する増幅回路10の出力信号に応じた補正信号hを出力する。補正回路8は、強度変調信号Bを補正信号hで補正する。APC回路9は、第1の光検出器5で検出した基本波光の強度が補正後強度変調信号B’に応じた値になるように半導体レーザ1を駆動する。 (もっと読む)


【課題】歪みの低減された光パルスを発生可能とする。
【解決手段】光を2つに分岐して分岐光のそれぞれを変調した後再び合波して出力する光変調器と、前記分岐光のそれぞれを変調するための各変調信号を生成する変調信号生成部と、を備え、前記各変調信号の一方の振幅と他方の振幅との差ΔAを0.2π≦ΔA<0.5πとすることにより光周波数コムを発生させる。 (もっと読む)


【課題】レーザ発光中の波長変換部破損を防止することにより、信頼性の高い眼科治療機器やレーザ加工機器を提供する。
【解決手段】基本波を出力する基本波レーザ光源101と、基本波レーザ光源101からの基本波106が入力され、高調波111を出力する波長変換部110と、波長変換部110を加熱冷却する温度設定部115と、温度設定部115を制御する温度制御部400と、波長変換部110からの高調波111の出力が目標値となるように基本波レーザ光源101を制御するレーザ光源制御部300と、を備え、基本波レーザ光源101からの基本波106の発光量を制限する光量制限部700が、温度制御部400の温度制御方向に応じて基本波レーザ光源101からの基本波の最大発光量を切り換えることを特徴とする光源装置とした。 (もっと読む)


【課題】信号対雑音比(SNR)が相対的に高いビート・ノートを発生させる構成を提供する。
【解決手段】信号対雑音比(SNR)が相対的に高いビート・ノートを発生させる本発明は、後処理された高非線形光ファイバ(HNLF)のセクションに結合されたパルス・レーザ源を利用して、スペクトル・パワーが増強された1つまたは複数の領域を有する周波数コムを発生させる。第2のレーザ信号源は、周波数コムとオーバーラップされ、第2の源と連続スペクトル・コムとの間で異なる周波数において1つまたは複数の「ビート・ノート」を発生させる。当該後処理によってスペクトル増強領域がコムに沿って形成され、第2のレーザ信号との相互作用により「高パワー」光ビート・ノートを発生させる。第2のレーザ信号を(コム「外部」の信号からビート・ノートを形成する)外部の源からとすることができ、または(コム「内部」の信号からビート・ノートを形成する)発生スーパーコンティニュームの周波数逓倍バージョンとすることもできる。 (もっと読む)


【課題】位相変調器を含む光送信装置において、位相シフトおよびDCドリフトなどを適切に制御できる構成を提供する。
【解決手段】位相シフト部12は、データ変調部20を構成するアーム21、22を介して伝搬する1組の光信号に対して所定の位相差(例えば、π/2)を与える。一方の光信号に対して低周波信号f0 が重畳される。他方の光信号には、低周波信号f0 の位相をπ/2だけシフトさせた信号が重畳される。1組の光信号は結合され、その一部がフォトダイオード3により電気信号に変換される。この電気信号に含まれている2f0 成分を検出する。2f0 成分が最小になるように、位相シフト部12に与えるバイアス電圧がフィードバック制御される。 (もっと読む)


【課題】発生される相関光子対の数の期待値を一定の値に安定して維持しながら動作する。
【解決手段】非線形光学媒質20と、励起光を出力する励起光源12と、補助信号光を出力する補助信号光源14と、励起光と補助信号光とを合波して出力する光合波器16と、光合波器から出力される出力光を非線形光学媒質に入力させる光結合器18と、非線形光学媒質から出力される出力光を、補助信号光成分と補助アイドラー光成分とに分別して出力する光分岐部22と、補助信号光成分及び補助アイドラー光成分の強度をそれぞれ検出する第1フォトディテクター24及び第2フォトディテクター26と、制御信号発生部30とを具えている。制御信号発生部は、第1及び第2フォトディテクターが検出した強度に基づき、相関光子対発生過程を制御するための制御信号を発生する。 (もっと読む)


【課題】コヒーレント受信とデジタル信号処理を組み合わせた光受信機における受信精度の良い光信号受信装置を提供する。
【解決手段】光信号受信装置は、受信した光信号を偏波分離する偏波ビームスプリッタと、偏波分離した各偏波の信号光のそれぞれと局部発振光を少なくとも2種類の光位相をもって混合し、それぞれの偏波と光位相の組み合わせに対応する少なくとも4系統の光信号を生成する光混合手段と、該光混合手段において得られた該少なくとも4系統の光信号を電気信号に変換する光電気変換手段と、該光電気変換手段によって得られたそれぞれの電気信号を共通の利得で増幅する増幅手段と、該光電気変換手段によって得られた電気信号をデジタル化するアナログ−デジタル変換手段と、光信号の強度を検出し、該強度に応じて該増幅手段の利得を制御する制御手段とを備える。 (もっと読む)


【課題】 レーザによる自己加熱を補償し、高強度での変換効率の低下を改善する。
【解決手段】 波長変換用非線形結晶10における波長変換による平均的な温度上昇を検出する温度検出器22による検出出力に基づいて、第1のペルチェ素子21を駆動して、上記波長変換用非線形結晶10の結晶全体の温度を平均した平均温度を制御し、上記波長変換用非線形結晶10の出射端面10Bから出射された2次高調波光(L)の光量に応じた大きさの駆動電流を第2のペルチェ素子31に流すことにより、上記波長変換用非線形結晶10内の温度勾配を相殺する熱流(HC2)を上記第2のペルチェ素子31により生じさせて上記温度勾配を制御して、上記波長変換用非線形結晶10の位相整合をとり、出射される2次高調波光(L)の光量が最大となる温度に上記波長変換用非線形結晶10の平均温度を上記第1のペルチェ素子21により制御する。 (もっと読む)


【課題】本発明は、波長変換部の温度を正確に検出することができないことにより、光源装置の出力が目標値に達しなくなってしまう。
そこで本発明は、光源装置の出力を目標値に設定することを目的とするものである。
【解決手段】この目的を達成するために本発明は、基本波を出力する基本波レーザ光源と、前記基本波を入力して、その高調波を出力する波長変換部と、この波長変換部を加熱冷却する温度設定部と、前記波長変換部の温度が設定温度となるように温度設定部を制御する温度制御部と、前記波長変換部からの高調波の出力の目標値を設定する目標光量設定部と、前記波長変換部からの高調波の出力が目標値となるように前記基本波レーザ光源を制御するレーザ光源制御部と、前記波長変換部からの高調波の出力が目標値に到達するまでの、前記レーザ光源制御部による応答信号に基づいて、前記温度制御部の設定温度を補正する温度補正部を備えた光源装置とした。 (もっと読む)


【課題】高調波光を安定して出射することが可能なレーザシステムを提供すること。
【解決手段】本発明は、レーザ光24を発振するDFBレーザ12と、DFBレーザ12の温度を調節するヒータ14と、レーザ光24をレーザ光24の高調波光34に変換する高調波生成素子18と、を有するレーザモジュール10と、高調波生成素子18で変換された高調波光34の強度を高調波生成素子18で高調波光34に変換されずに高調波生成素子18を通過した非変換光36の強度で規格化した規格化高調波光の強度が所定の強度になるようにヒータ14に注入するヒータ電流28を制御する制御部40と、を具備するレーザシステム100である。 (もっと読む)


【課題】本発明は光源装置の出力を設定した目標値に安定に制御可能にすることを目的とするものである。
【解決手段】基本波106を出力する基本波光源部101に所定の電流を入力し、駆動するレーザ駆動部150と、前記基本波106を入力して、波長変換部110からの高調波の出力を検出する高調波出力検出部113の信号が目標値となるように前記レーザ駆動部150へ入力する電流を増減するレーザ制御部300と、前記波長変換部110を加熱冷却する温度設定部116とを備え、レーザ駆動部150への入力信号の傾斜を検出し、その傾斜量に基づき、前記温度制御部400の設定温度を補正する温度補正部とを備えた光源装置。 (もっと読む)


【課題】高出力の波長変換レーザ光源において高調波のビーム径を一定に保つレーザ光源を提供する。
【解決手段】基本波を生成するレーザ発振器と、前記基本波を高調波に変換する波長変換素子と、前記波長変換素子の温度を一定値に保つ素子温度保持部と、前記高調波のビーム径を検出するビーム径検出部と、前記素子温度保持部の温度を前記ビーム径検出部による検出値に応じて制御する温度制御部と、前記高調波のビーム径を設定するビーム径設定部をさらに備え、前記ビーム径検出部での検出値と前記ビーム径設定部で設定されたビーム径との差分値が最小になるように前記素子温度保持部の温度を制御する温度制御部とからなるレーザ光源。 (もっと読む)


【課題】100μ秒以上にレーザパルスの間隔を変化させても、その間隔に影響されることなく安定したレーザパルスを出力できるファイバレーザ光源を提供する。
【解決手段】レーザ活性物質を含むファイバとその両端にファイバグレーティングを設けたレーザ共振器と、前記共振器の一端に励起光を入射する励起用レーザ光源と、連続パルス光を出力する際に、前記励起用レーザ光源に前記レーザ共振器がパルス発光できる第1の電流を与えた後に、前記第1の電流より小さく前記レーザ共振器の閾値電流より大きい第2の電流を与え、前記第2の電流を停止した後に休止期間を設けて次のパルス発光を行うための電流を前記励起用レーザ光源に与える駆動電流供給手段と、から成るファイバレーザレーザ光源。 (もっと読む)


【課題】変調時の動作条件が変動した場合における光パルスの波形劣化を抑制すること、また、ノイズ成分の小さい光パルスを発生させること。
【解決手段】光パルス発生装置1は、光周波数が増加方向に変化する第1の時間領域と減少方向に変化する第2の時間領域が交互に繰り返され、前記第1及び第2の時間領域の一方の時間領域で大きい光パワーを有し他方の時間領域で小さい光パワーを有する連続した光パルス列を発生させる光パルス発生部20と、前記光パルス発生部20からの光が入射され、前記一方の時間領域で前記入射光を透過させ前記他方の時間領域で前記入射光を遮断又は減衰させる光制御部30と、前記光制御部30からの光が入射され、前記一方の時間領域の光をパルス圧縮する光パルス圧縮部40と、を備える。 (もっと読む)


【課題】加工径を一定の大きさにできるレーザ加工装置を提供する。
【解決手段】基本波レーザ光2を高調波レーザ光に変換し変換ビーム5として出力する波長変換素子4と、変換ビーム5を加工ビーム10として集光する集光レンズ9と、波長変換素子4の初期設定温度と加工ビーム10の設定ビーム径とが格納されるメモリ18と、変換ビーム5の一部を光量情報12として検出する光量検出手段11と、変換ビーム5の照射時間を測定し照射時間情報15を測定する照射時間測定手段13と、光量情報12と照射時間情報15とから加工ビーム10の予測ビーム径を計算するビーム径予測手段19と、ビーム径予測手段19によって算出した予測ビーム径とメモリ18に格納された設定ビーム径との差分に応じたビーム径調整温度を計算する。このビーム径調整温度になるように波長変換素子4の温度調整を行う温度調整手段40とを有するレーザ加工装置とした。 (もっと読む)


【課題】 測定可能な信号光の伝送路損失の範囲を拡大する。
【解決手段】 本発明の光増幅装置は、ラマン増幅媒体にポンプ光を供給することで、ラマン増幅媒体を伝搬する信号光をラマン増幅する装置であり、ラマン増幅媒体にポンプ光を供給するポンプ光供給手段と、ラマン増幅媒体に対するポンプ光の入力パワーを検出する第1検出手段と、ラマン増幅媒体に対するポンプ光の出力パワーを検出する第2検出手段と、ポンプ光の入力パワー及び出力パワーを比較することで、ラマン増幅媒体におけるポンプ光の伝送路損失を算出するポンプ光損失算出手段と、ラマン増幅媒体におけるポンプ光の伝送路損失に対して、信号光の波長及びポンプ光の波長に基づく補正を行うことで、ラマン増幅媒体における信号光の伝送路損失を算出する信号光損失算出手段とを備える。 (もっと読む)


21 - 40 / 252