説明

Fターム[3D246JB55]の内容

ブレーキシステム(制動力調整) (55,256) | 制御方法 (3,867) | 制御理論 (94) | 現代制御理論 (20)

Fターム[3D246JB55]に分類される特許

1 - 20 / 20


【課題】簡単な構成でハンドル角が小さな低横加速度旋回領域とハンドル角が大きな高横加速度旋回領域を含む全横加速度旋回領域において車両の運動状態を的確に制御して操縦安定性を高めることができる車両の運動制御装置を提供すること。
【解決手段】車速とハンドル角に基づいて目標ヨー角速度を算出し、算出された目標ヨー角速度と実際のヨー角速度との偏差が実質的に0になるよう車両の運動を制御するECU(制御手段)と、を備える車両の運動制御装置において、前記ECUは、ハンドル角が所定の閾値よりも小さい低横加速度旋回領域においてはハンドル角に比例する目標ヨー角速度を使用し、ハンドル角が前記閾値よりも大きい高横加速度旋回領域においてはハンドル角に依存しない最大横加速度で車両が定常円旋回するときのヨー角速度を目標ヨー角速度として使用して車両の運動を制御する。 (もっと読む)


【課題】簡単な構成のマップを用いて、所望の位置及び速度の方向に到達するときの速度の大きさを最小化する車体合成力及び回避軌道を導出する。
【解決手段】所望の位置、該位置での速度の方向、及び車体合成力の最大値を設定し、自車両の速度のx成分vx0、y成分vy0、自車両と所望の位置との距離のx成分X、距離のy成分Y、及び車体合成加速度の最大値F/mを用いた各々異なる3つのパラメータを演算し、3つのパラメータと、所望の位置及び速度の方向に到達するときの速度の大きさを最小化する車体合成力を求めるために導入した第1の導入パラメータηの特定仮定下での値η’との関係、第2の導入パラメータηの特定仮定下での値η’との関係、第3の導入パラメータηの特定仮定下での値η’との関係を定めた低速化3次元マップを用いて、所望の位置及び速度の方向に到達するときの速度の大きさを最小化する車体合成力を導出する。 (もっと読む)


【課題】多機能化するブレーキシステムのそれぞれの機能を適切に調停し、ドライバの信頼性を高め、安全性を向上する。
【解決手段】ブレーキ制御ユニット30は、横すべり防止制御の機能とコーナリング制動制御の機能と車線逸脱防止ヨーモーメント制御の機能と車線逸脱減速制御の機能と追従走行制御の機能の5つの機能を有しており、車両のヨーモーメントを制御する横すべり防止制御の機能とコーナリング制動制御の機能と車線逸脱防止ヨーモーメント制御の機能は、横すべり防止制御の機能を最優先で実行し、次に、コーナリング制動制御の機能を優先して実行し、次いで、車線逸脱防止ヨーモーメント制御の機能を実行する。また、車両を減速制御する車線逸脱減速制御の機能と追従走行制御の機能は、減速指示値の大きい方の減速指示値を出力する。 (もっと読む)


【課題】各種状態制御量の制御を介して最終的に車両状態量を制御する各種のデバイスが故障した場合において、故障したデバイスに対応する状態制御量を中立点に復帰させるまでの過渡的過程における車両挙動を安定に維持する。
【解決手段】車両の挙動制御装置(100)は、ドライバによる操舵とは無関係に前輪の舵角を変化させることが可能な前輪舵角可変手段及びドライバによる操舵とは無関係に後輪の舵角を変化させることが可能な後輪舵角可変手段のうち一方が異常状態にあるか否かを判定する判定手段と、一方が異常状態にあると判定された場合に、この一方に対応する異常側車輪の舵角を中立点に戻す舵角戻し手段と、異常側車輪の舵角を中立点に戻す過程において、異常側車輪の舵角の戻し量に応じて、異常状態にない他方に対応する正常側車輪の舵角と左右制駆動力差とを制御する制御手段とを具備する。 (もっと読む)


【課題】 車両挙動を安定化させつつ横方向運動制御を停止させることができる横方向運動制御装置を提供すること。
【解決手段】 横方向運動制御装置は、車両の横方向運動量の目標値に基づいて、車両の横方向運動量を変化させるために協調して作動する複数の制御対象の横方向運動制御量を演算し、演算した横方向運動制御量に基づいて複数の前記制御対象を制御する。また、複数の前記制御対象の制御を停止するか否かを判断する。複数の前記制御対象の制御を停止すると判断したときに、そのときから複数の前記制御対象の横方向運動制御量が縮退するように、複数の前記制御対象の横方向運動縮退制御量をそれぞれ決定し、決定した横方向運動縮退制御量に基づいて複数の前記制御対象を制御する。 (もっと読む)


【課題】回生協調制御による電費向上効果を最大限に生かしつつ、限界領域に近い走行シーンにおいて車両挙動の安定性を確保すること。
【解決手段】電動車両の制御装置は、回生協調ブレーキ制御手段としてモータコントローラ21およびブレーキコントローラ10と、舵角補正ステアリング制御手段として4WASコントローラ22と、車両挙動制御手段として車両コントローラ9と、を備える。車両コントローラ9は、回生協調ブレーキ制御時、車両挙動の乱れを補償するように、舵角補正ステアリング制御により舵角補正をした後、依然として車両挙動が不安定であると判断されたとき(図4のステップS6でNO)、回生協調ブレーキ制御による回生トルクを低下させる制御を行う(図4のステップS7,S8)。 (もっと読む)


【課題】簡単な構成のマップを用いて、移動する障害物を回避するための車体合成力及び回避軌道を導出する。
【解決手段】障害物を回避直後の速度方向及び車体合成力の最大値を設定し、自車両の速度のx成分vx0、y成分vy0、障害物の速度のy成分Z、位置のy成分Z、及び車体合成加速度の最大値F/mを用いた各々異なる3つのパラメータを演算し、3つのパラメータと、障害物を回避しながら設定した速度方向に移動する際、車体前後方向の移動距離を最小化する車体合成力を求めるために導入した第1の導入パラメータνの特定仮定下での値ν’との関係、第2の導入パラメータνの特定仮定下での値ν’との関係、障害物の回避に要する時間tの特定仮定下での時間t’との関係を定めた最短3次元マップを用いて、障害物を回避しながら設定した速度方向に移動する際、車体前後方向の移動距離を最小化する車体合成力を導出する。 (もっと読む)


【課題】ブレーキ制御装置において、回生協調制御実行中に、マスタシリンダ内のブレーキ液圧の急激な変動を抑制して、減速度の急変を抑制し、運転者に与える違和感を小さくする。
【解決手段】入力ピストン32に連結されたブレーキペダルの操作に応じて、コントローラCによって電動モータ40を作動させ、入力ピストン32及びプライマリピストン10の位置に基づき、マスタシリンダ2内のブレーキ液圧を制御する。回生協調制御実行中に、プライマリピストン10の後退位置を制限してリザーバポート20が開かないようにする。これにより、回生制動の増大に伴うプライマリピストン10の後退により、リザーバポート20が開いてマスタシリンダ2内のブレーキ液圧が急激に変動するのを防止することができ、減速度の急変を抑制し、運転者に与える違和感を小さくすることができる。 (もっと読む)


【課題】車両の実姿勢状態量、特に、実車体横滑り角の推定精度が悪化する場合にも、車両の運動制御性能が低下しない車両の運動制御装置を提供する。
【解決手段】車両の運動制御装置は、コントロールユニット37、並びに、センサ2,3,4,30,31,32,33等を含んで構成されている。実状態量取得部52は、実車体横滑り角βz_act等を演算する。規範動特性モデル演算部54は、動特性モデルを用いて、規範車体横滑り角βz_d等を演算する。そのほかに実車体横滑り角βz_actにもとづいて第1のアンチスピン・目標ヨーモーメントMc1_aspを演算する第1のアンチスピン目標ヨーモーメントFB部68、横方向加速度Gs、車速Vact、実ヨーレートγactにもとづいて第2のアンチスピン・目標ヨーモーメントMc2_aspを演算する第2のアンチスピン目標ヨーモーメントFB部82を有している。 (もっと読む)


【課題】ドライバへの操作負担を軽減できるステアリング制御とブレーキ制御の協調制御を行う車両用運動制御装置を提供する。
【解決手段】ステアリング制御とブレーキ制御のいずれをメインに行うかを選択し、その選択結果に基づいて、メインとされる側に対して行わせる車両旋回運動の要求値を出力すると共に、メインとされない側に目標値とメイン側要求値との差に応じた要求値を出力することで、ステアリング制御とブレーキ制御それぞれの配分を適切に設定する。これにより、ステアリング制御をメインとしつつブレーキ制御による補助を行うことが可能となるため、ステアリング制御のみの場合よりも目標値追従性を向上させた車両運動制御が行える。そして、ドライバへの操作負担を軽減できるステアリング制御とブレーキ制御の協調制御を行うことが可能となる。 (もっと読む)


【課題】タイヤ状態を精度よく推定する。
【解決手段】タイヤすべり角を推定するタイヤすべり角推定手段500と、タイヤすべり角の前回値、タイヤすべり率及びタイヤ縦力に応じてタイヤ力最大値を推定するタイヤ力最大値推定手段300と、を有し、タイヤすべり角推定手段500は、タイヤ力最大値、タイヤすべり率、タイヤ縦力及び車両状態測定値に基づいてタイヤすべり角を推定する。これによって、タイヤ状態を精度よく推定することができる。 (もっと読む)


【課題】簡単な構成のマップを用いて目標位置及び目標位置における速度方向に到達するために最大値が最小となる車体合成力を導出する。
【解決手段】記憶された自車両と目標位置との間の距離のx成分Xとy成分Yとの比で定めた第1のパラメータ、自車両の速度のx成分vx0とy成分vy0との比で定めた第2のパラメータ、及び目標位置及び目標位置における速度方向に到達するために最大値が最小となる車体合成力を求めるために導入した第1の導入パラメータνの関係を定めた第1のマップ、第1のパラメータ、第2のパラメータ、及び第2の導入パラメータνの関係を定めた第2のマップ、並びに第1のパラメータ、第2のパラメータ、及び目標位置に到達する時刻tの関係を定めた第3のマップと、現在の自車両と目標位置との間の距離及び自車両の速度に基づいて演算された第1のパラメータ、第2のパラメータとを用いて車体合成力を導出する。 (もっと読む)


【課題】非定常な車両加減速状態を含む車両のダイナミクスの変化に応じて、制御ヨーモ
ーメント量を調整すること。
【解決手段】入力された横方向の加加速度(Gy_dot)を、入力された車両の前後方向の速度(V)で除した値(Gy_dot/V)に対して、さらに入力された車両の横加速度(Gy)で除した値に比例した物理量に基づいて、車両の前後加速度の制御指令を生成し、生成された前記制御指令を出力する車両の運動制御方法。また、上記の車両の横方向の加加速度(Gy_dot)は、入力された横加速度を(Gy)をもとに求めること。また、入力された車両の横方向の加加速度(Gy_dot)に、速度(V)及び横加速度(Gy)から決定され、予め記憶されたゲイン(KGyV)を乗じ、乗じた値に基づいて、車両の前後加速度を制御する制御指令を生成し、生成された前記制御指令を出力する車両の運動制御方法。 (もっと読む)


【課題】路面摩擦係数に対して高い精度で推定対象の値を得る。
【解決手段】車両接地面摩擦状態推定装置は、基準路面摩擦係数とは異なる路面摩擦係数μ及び該基準路面摩擦係数とは異なる路面摩擦係数μの路面でのスリップ角βtを入力とし、入力されたスリップ角βtに、基準路面摩擦係数μを路面摩擦係数μで除した値(μ/μ)を掛け算して基準路面でのスリップ角βtを得て、基準路面摩擦係数の基準路面で得られるタイヤ力とスリップ度との相関関係で成立するタイヤ特性をモデル化したタイヤモデルに従い、掛け算して得た基準路面でのスリップ角βtに対応する基準路面での横力Fyを得て、その得た基準路面での横力Fyに、路面摩擦係数μを基準路面摩擦係数μで除した値を掛け算して路面摩擦係数μの路面での横力Fyを得る。 (もっと読む)


【課題】ブレーキ液圧の変動によらず、転舵対象車輪の車輪転舵角を安定性を良くすることのできる車両用転舵制御装置および車両用転舵制御方法を提供する。
【解決手段】ブレーキ液圧補正演算部61は、ブレーキ液圧が上昇している場合において、ブレーキ液圧が減少したときにブレーキ液圧を増加させて補正したブレーキ液圧補正値を出力する。そして、路面摩擦係数推定部63は、このブレーキ液圧補正値に基づいて路面摩擦係数を推定する。これにより、操舵制御量が安定化しスプリットμ路における運転者による修正操舵を容易にする。 (もっと読む)


【課題】ドライバの運転状態を総合的に検出することができるドライバ状態検出装置を提供する。
【解決手段】自車両の進行方向に先行車両が存在する場合、ドライバからみた先行車両の像の大きさの変化度合いを示すドライバ状態係数Kを算出し、このドライバ状態係数Kからドライバの運転状態を検出する。このドライバ状態係数Kは、自車両に先行車両の画像を撮影する撮像手段を備えておき、その撮像手段の撮影した先行車両の画像の面積の単位時間当たりの変化度合いから算出する。 (もっと読む)


本発明は、車両(1)の横方向ダイナミクスを制御するための方法、及び車両(1)のための横方向ダイナミクス制御装置に関する。操作条件が満たされた場合には、シャーシ操作が実行される。この操作条件が満たされるのは、測定された横方向ダイナミクス外乱変数の絶対値が、外乱変数限界値よりも大きいときであり、また、下記の諸基準の中の1つ、又は下記の諸基準の中の複数の基準が満たされているときである。
− 車両縦方向速度が車両縦方向速度限界値よりも大きい、
− センサによって測定された実測ヨーレイトが、算出された現在のヨーレイト以下である、
− 運転者によって制動を通して引き起された、ブレーキトルク値を表しているブレーキトルクが、ブレーキトルク限界値以下である、
− 車両ホイールのシャーシスプリングにおける現在のスプリングのたわみを表すスプリングたわみ値が、スプリングたわみ限界値以下である、
− 2つのシャーシスプリングにおける現在のスプリングたわみの差を表すスプリングたわみ差異値が、スプリングたわみ差異限界値以下である、
− 2つの車両ホイールの間のスキッド差を表すスキッド差値が、スキッド差限界値以下である。 (もっと読む)


【課題】車両が急激に不安定になってしまう事態を防止あるいは抑制する。
【解決手段】目標横力、目標前後力、目標ヨーモーメントとなるように、前後左右の各タイヤ1FL〜1RRへの横力fxiおよび前後力fyiが個々独立して変更制御される(i=各タイヤを区別する識別子)。タイヤ力検出センサ20で検出されたタイヤ力に基づいて、各タイヤの負荷率ηiが決定される。負荷率ηiが所定値以上となる飽和タイヤが存在することが検出されたとき、飽和タイヤにおける横力不足分が、飽和タイヤに対して左右反対側にある他のタイヤに加算される。 (もっと読む)


【課題】車両が急激に不安定になってしまう事態を防止あるいは抑制する。
【解決手段】コントローラUによって、目標横力、目標前後力、目標ヨーモーメントとなるように、前後左右の各タイヤ1FL〜1RRへの横力fxiおよび前後力fyiが変更制御される(i=1〜4で各タイヤの識別子)。タイヤ力検出センサ20で検出されたタイヤ力と、各タイヤで得られる最大タイヤ力fmaxiとに基づいて、各タイヤの負荷率ηiが決定される。前後左右のタイヤを対角線上に位置する2つのタイヤ同士で対をなす2組のタイヤ対に分けて(1FLと1RR、1FRと1RL)、対となるタイヤの負荷率(η1とη4、η2とη3)が互いに均等となるように各タイヤのタイヤ力が変更制御される。 (もっと読む)


【課題】車両の走行状態をより正確に推定すること。
【解決手段】自動車1Aは、系にダイナミクスを持たせた(1)式を基に、積分を行うことなく車体速度Vおよび車輪のスリップ率λiを算出できるため、誤差の蓄積等による推定精度の低下を防ぐことができ、より正確な車体速度Vおよび車輪のスリップ率λiを取得することができる。したがって、車両の走行状態をより正確に推定することができる。 (もっと読む)


1 - 20 / 20