説明

Fターム[3E172DA04]の内容

ガス貯蔵容器、ガスの充填、放出 (22,547) | 機能 (1,039) | 断熱 (348) | 断熱手段 (184) | 真空層 (53)

Fターム[3E172DA04]に分類される特許

1 - 20 / 53


【課題】 屋外の据え付け場所において、短期間で正確にかつ安全に設置するのに適したLNGサテライト設備を提供する。
【解決手段】 本発明のLNGサテライト設備Xは、液化天然ガスを貯蔵する貯槽ユニット1と、液化天然ガスを気化する気化ユニット3と、配管ユニット2と、を備える。配管ユニット2は、下段部23Aおよび上段部23Bを有する2段式の架台23と、下段部23Aに配置され、貯槽ユニット1から気化ユニット3に液化天然ガスを移送するLNG用配管21と、上段部23Bに配置され、気化ユニット3から導出されるガスを通すガス用配管22と、を有する。貯槽ユニット1、気化ユニット3、および配管ユニット2は、所定の据え付け場所に設置される。 (もっと読む)


【課題】低温液化ガスの輸送能力の向上と、加圧蒸発器の能力向上による低温液化ガスの荷下ろし作業性の向上とを両立できる移動式容器を提供すること。
【解決手段】低温液化ガスを貯蔵するタンク10と、そのタンク10に貯蔵された低温液化ガスが導入される伝熱管41を有する加圧蒸発器40とを備える移動式容器1において、加圧蒸発器40は伝熱管41の周囲に気体が強制供給される。その結果、伝熱管41の周囲の風速を大きくすることができ、伝熱管41と空気との伝熱を促進させ、熱抵抗を低減できる。よって加圧蒸発器40の熱通過率を大きくすることができる。これにより加圧蒸発器40を大型化することなく加圧蒸発器40の能力を高めることができる。その結果、低温液化ガスの輸送能力の向上と、加圧蒸発器40の能力向上による低温液化ガスの荷下ろし作業性の向上とを両立できる。 (もっと読む)


【課題】本発明は、内槽内の液化水素の液面の位置に依存することなく、内槽内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽内に効率よく液化水素を充填可能な液化水素貯蔵供給設備を提供することを課題とする。
【解決手段】内槽51内に設けられ、下端33Aが内槽51の下部51Bに貯留された液化水素42−1に到達し、上端33Bが内槽51の上部51Aに配置され、上端33B及び下端33Aが開口された筒状部材33と、一方の端32Aが液化水素抜き出し用配管27の他方の端27Bと接続され、内槽51を貫通し、内槽51内の下部51Bに位置する液化水素42−1に浸漬された他方の端32Bから筒状部材33内にバブリングされた加圧用水素ガスを供給する第1の加圧ガス供給用配管32と、第1の加圧ガス供給用配管32に設けられ、加圧用水素ガスをバブリングするバブリング用加圧弁31と、を有する。 (もっと読む)


【課題】水素タンクの加熱・冷却を簡素に行える燃料電池システム及びこれを用いた給湯システムを提供する。
【解決手段】燃料電池水素タンク一体型ユニット110は、燃料電池モジュール150と、水素タンク140とを備える。燃料電池モジュール150の発電の際に燃料電池モジュール150から発生した熱は、第一の熱媒体層183、第一の空気層192、第二の熱媒体層185を介して水素タンク140に伝達される。水素タンク140は水素貯蔵材を備え、燃料電池モジュール150から伝達された熱によって水素を放出し、放出された水素を利用して燃料電池モジュール150が発電を行う。第一の中空部材174には第一の空気層192に含まれる空気の量を調節する第一の真空度調節装置196が取り付けられ、真空度の調節によって空気層192の熱伝導率が調節できる。これによって燃料電池モジュール150から水素タンク140への熱の伝達を調節できる。 (もっと読む)


【課題】シリンダブロックの温度上昇を防止することができ、加圧室内に吸い込まれた低温流体の蒸発気化を防止することができて、加圧室内に吸い込まれた低温流体を所望の圧力にまで効率よく昇圧させることができる低温流体用昇圧装置を提供すること。
【解決手段】シリンダライナ76の外周面には、その上端が開放端とされ、その下端が閉塞端とされて上下方向に延びる凹所76bが、周方向に沿って複数本設けられており、シリンダブロック74の側面には、前記シリンダブロック74と断熱真空容器75との間に形成された空間内に溜められた低温流体Lを、前記シリンダライナ76の外周面に設けられた前記凹所76b内に導く貫通穴74aが、周方向に沿って複数個設けられている。 (もっと読む)


【課題】低温流体貯蔵槽内における低温流体の気化(ボイルオフ)を低減させること。
【解決手段】低温の固液二相流体が貯蔵される低温流体貯蔵槽62と、この低温流体貯蔵槽62が収容される真空断熱槽61とを備えた低温流体用貯蔵タンク60であって、前記低温流体貯蔵槽62の内面のうち、底面を除いた上面および側面に、熱伝導率の小さい断熱材63が取り付けられている。 (もっと読む)


【課題】低温流体貯蔵槽内における低温流体の気化(ボイルオフ)を低減させること。
【解決手段】低温の固液二相流体が貯蔵される低温流体貯蔵槽42と、この低温流体貯蔵槽42が収容される真空断熱槽41とを備えた低温流体用貯蔵タンク40であって、前記低温流体貯蔵槽42が、複数本の支持部材45を介して前記真空断熱槽41の内面に支持された中間部材43の内部に収容されており、かつ、前記低温流体貯蔵槽42の外周側の底面と、前記中間部材43の内周側の底面との接合部が、一本の線を形成するように接合されている。 (もっと読む)


【課題】 中圧ガスタンク(リザーブタンク)や大規模な蒸発器を備えることなく構成でき、またボイルオフガスの発生を抑制することができる燃料電池車両の燃料用水素供給システムを提供する。
【解決手段】 燃料電池車両の燃料用水素供給システムにおいて、液遮蔽板2によってガス部2Aと液部2Bに分割された水素タンク1と、この水素タンク1を覆うように配置される断熱真空容器5と、この断熱真空容器5内部の真空槽5A内に設けた機械的熱伝導スイッチAと、水素ガスを前記水素タンク1から燃料電池3に供給するための高圧ガス配管4とを備え、前記機械的熱伝導スイッチAをオンにすることにより、前記水素タンク1を加熱し、前記液部2Bに貯蔵された液体水素を気化させ、前記水素ガスを前記燃料電池3に供給する。 (もっと読む)


【課題】低温流体貯蔵槽内における低温流体の気化(ボイルオフ)を低減させること。
【解決手段】低温の固液二相流体が貯蔵される低温流体貯蔵槽12と、この低温流体貯蔵槽12が収容される真空断熱槽11とを備えた低温流体用貯蔵タンク20であって、前記低温流体貯蔵槽12の内面に輻射シールド板22を備えるとともに、前記低温流体貯蔵槽12の内部に、前記固液二相流体を液相14と固相15とに分離する分離手段21を備えてなり、かつ、前記固液二相流体の固相15と前記輻射シールド板22とが、前記輻射シールド板22に連結された熱伝導部材23を介して熱的に結合されている。 (もっと読む)


【課題】低温流体貯蔵槽内における低温流体の気化(ボイルオフ)を低減させること。
【解決手段】低温の固液二相流体が貯蔵される低温流体貯蔵槽82と、この低温流体貯蔵槽82が収容される真空断熱槽81とを備えた低温流体用貯蔵タンク80であって、前記低温流体貯蔵槽82内の空間を、その側面に沿って分離する仕切板83が、前記低温流体貯蔵槽82の内面に取り付けられている。 (もっと読む)


【課題】低温流体貯蔵槽内における低温流体の気化(ボイルオフ)を低減させること。
【解決手段】低温の固液二相流体が貯蔵される低温流体貯蔵槽111と、この低温流体貯蔵槽111が収容される真空断熱槽とを備えた低温流体用貯蔵タンク110であって、前記低温流体貯蔵槽111の高さ方向における略中間部に、前記低温流体貯蔵槽111の内部空間を上下に二分するとともに、熱伝導率の小さい断熱材を材料として作製された仕切板112が設けられており、かつ、この仕切板112の周縁部に、板厚方向に貫通する複数個の連通部113が形成されている。 (もっと読む)


【課題】水素の利用効率(エネルギー効率)を向上させる。
【解決手段】水素貯蔵タンク2に貯蔵された水素を昇圧ポンプ3により昇圧して、水素を燃料とする車両に水素を供給する移動式水素供給ステーション1であって、前記水素貯蔵タンク2および/または昇圧ポンプ3にて発生したボイルオフガスを回収する水素ガス回収装置8と、前記水素ガス回収装置8から供給されたボイルオフガスと、酸素ガス供給源から供給された酸素ガスとを電気化学反応させて電気エネルギーを作り出す燃料電池9とを備え、前記燃料電池9で作り出された電気エネルギーにより、前記昇圧ポンプ3を駆動することができるように構成した。 (もっと読む)


本発明は、外容器と内容器とを有しており、両者間に超断熱体が収容される、真空排気された空隙が存在しており、またその際には前記超断熱体が、金属被覆が施された複数のフィルムから成る多層構造を有しており、前記各フィルムが、好適には絶縁材の形態をとるスペーサにより互いから切り離されている、極低温流体用容器の使用方法に関し、前記各フィルムが一つまたは複数のフィルムコンデンサとして作用するとともに、それに適する形で、前記容器の外側に配置される対応する電気端子に電圧を印加可能であるように電気接触されることによって、これを電気エネルギ用の貯蔵装置として使用する。そのような容器では、一つまたは複数のフィルムの両面または両側の表面に金属被覆が施されているとよく、また前記一つまたは複数のフィルムは、半導体の特性を示す材料から成るとよい。前記各フィルムコンデンサは、電気的に直列または並列に接続されたものであるとよく、前記各フィルムの金属被覆の電気接触部は、前記外容器の内部への前記内容器の懸架構造を利用して取り廻されたものであるとよい。
(もっと読む)


流体の流れを液化し且つ液化流体を貯蔵するデュワーシステムが構成される。デュワーシステムは単一の可搬なハウジング内に配置される。デュワーシステムの構成部品を単一のハウジング内に配置することは、液化流体が、流体を液化するよう構成される熱交換組立体と液化流体を貯蔵するよう構成される貯蔵組立体との間で、強化された方法で移転されることを可能にする。1つの実施態様において、デュワーシステムによって液化され且つ貯蔵される流体の流れは、酸素(例えば、純酸素)、窒素、及び/又は、何らかの他の流体である。
(もっと読む)


本発明は、高い信頼性で超高純度(UHP)ヘリウム気体を供給するため、及び専用の現場在庫を維持するための方法及び装置に関する。具体的には、複数のISOコンテナを採用し、1つ又は複数のスタンバイISOコンテナ内の気化されたUHPヘリウムが、オンラインISOコンテナ内の圧力を蓄積するために使用される。ISOコンテナの熱遮蔽を使用して、バックアップISOコンテナ内への熱の漏れを減少させることができ、それによりヘリウム気化速度、及び容器の最大許容作業圧力(MAWP)を維持するために引き抜く必要がある気体の量を減少させる。ISOコンテナ内の液体を維持しながら、エコノマイザ弁を使用してUHPヘリウム気体を引き出すことによって、さらに低い供給速度が可能である。これにより、低流量要件からより高い流量要件まで供給速度を効率的に管理でき、また貯蔵容器からのUHPヘリウム引出し速度を最適化できる。さらなる利点は、顧客に送られるUHPヘリウム気体が液体源から直接届くので、より高純度であることである。UHPヘリウム気体は、半導体製造で、例えばウェハ上への薄膜堆積中に堆積チャンバ内に前駆体を導入するためのキャリア・ガスとして使用することができる。
(もっと読む)


【課題】加圧蒸発ラインに加圧蒸発器をバイパスするバイパスラインを設けて、加圧蒸発器及びバイパスラインを流通する液化水素のそれぞれの流量を制御することにより、液化水素収納槽内の上方のガス相の温度が設定温度となるようにした液化水素供給設備及び液化水素供給用のタンクローリーである。
【解決手段】液化水素収納槽2の下部と上部とを接続した加圧蒸発ライン4における加圧蒸発器4aの入口側に第一開閉弁4cを設け、第一開閉弁4cの入口側から分岐し加圧蒸発器4aの出口側に合流するバイパスライン4dを設け、バイパスライン4dに第二開閉弁4eを設け、液化水素収納槽2内の上方における液化水素のガス相の温度を検出する温度検出器5の検出温度が設定温度となるように、第一開閉弁4c及び第二開閉弁4eの弁開度を制御することにより、液化水素の充填時に液化水素収納槽2内の圧力の上昇が小さくなるようにした。 (もっと読む)


【課題】二酸化炭素などの液体窒素又は液体酸素等の温度において固体に昇華する封入ガスが真空断熱層に封入された真空断熱容器及びその真空断熱層への封入ガスの挿入方法を提供する。
【解決手段】真空断熱層4を有する真空断熱容器1であって、真空断熱層4に封入ガス5を封入する。封入ガス5は常温で気体であり、極低温冷媒7を真空断熱容器1内に入れたときに封入ガス5が極低温に冷却され凝縮性ガスとして昇華して、真空断熱層4を画成する壁面に付着する。封入ガス5は、二酸化炭素、炭化水素ガス、無機酸化物ガス、アンモニア、アルコールの何れかとすることができる。炭化水素ガスは、フロン、フロリナート、アセチレンの何れかとしてもよい。 (もっと読む)


【課題】 低温タンクの防熱に用いる真空断熱材の組込み効果を高め、また断熱パネル間の接着を容易に、しかも隙間のないよう確実に行うことのできる低温タンクの断熱構造および断熱施工方法を提供する。
【解決手段】 真空断熱材4aを内部に有する断熱パネル2を低温タンクの外側に複数配置し、それら断熱パネル2間の継ぎ目の外側に、真空断熱材7aを内部に有する追加断熱パネル7を複数配置する。上記の継ぎ目を形成する断熱パネル2同士とその外側に配置された追加断熱パネル7とに接する空間(目地部8)に、ウレタンフォームを注入し充填する。 (もっと読む)


【課題】外槽容器から内槽容器へと熱伝導される熱を低減することができる二重構造の液化ガス燃料容器を提供すること。
【解決手段】
内部空間に液化ガス燃料としてのLNG燃料を貯留する内槽容器10と、内槽容器10を外側から包むように所定の空間を空けて設けられる外槽容器20と、を備え、外槽容器20と内槽容器10との間は真空である二重構造の燃料容器100であって、外槽容器20の内殻21の少なくとも二か所に磁石51b〜54bが固着され、磁石51b〜54bの位置と対応する内槽容器10の外殻11に、外槽磁石51b〜54bと同極又は異極の内槽磁石51a〜54aが外槽磁石51b〜54bと対向するように固着され、外槽磁石51b〜54b及び内槽磁石51a〜54aの磁力により内槽容器10を浮遊支持するようにした。 (もっと読む)


【課題】内槽の容量を確保しながら、輸送時に輸送車両の車両総長さを極力短くするとともに、貯槽設置場所での組付作業を簡易化することのできる液化ガス貯槽を提供する。
【解決手段】内槽11内に連通して内槽下方に突出する複数の配管16を、内槽11の軸線を通る平面に対して一側方に配置する。配管16が外槽下部部材14を貫通する位置の配管外周に断熱用キャップ17をそれぞれ気密に固着する。内槽11と外槽下部部材14とを接合するときに、外槽下部部材14に設けられた挿通孔23に断熱用キャップ17を挿通し、該断熱用キャップ17の外周部を外槽下部部材14に気密に接合する。 (もっと読む)


1 - 20 / 53