説明

Fターム[3G093BA15]の内容

車両用機関又は特定用途機関の制御 (95,902) | 目的 (12,965) | 制御精度の向上 (1,337) | 応答性の向上 (673)

Fターム[3G093BA15]に分類される特許

1 - 20 / 673


【課題】燃料の微粒化を図りながら適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】エンジンの自動停止条件が成立してから、燃料噴射弁からの燃料噴射を停止する燃料カットが実行されるまでの間(t0〜t2)に、燃料噴射弁の燃圧を上昇させる制御を実行する。再始動時には、停止時圧縮行程気筒2Cのピストンが基準停止位置よりも下死点側の特定範囲にあるか否かを判定し、特定範囲にある場合には、燃料噴射弁から停止時圧縮行程気筒2Cに最初の燃料を噴射することで、エンジンを再始動させる。この停止時圧縮行程気筒2Cへの最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とを実行する。 (もっと読む)


【課題】筒内環境に応じた適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】本発明では、エンジンの自動停止後の再始動時に、停止時圧縮行程気筒のピストンが基準停止位置よりも下死点側の特定範囲にあるか否かを判定し、特定範囲にある場合には、燃料噴射弁から停止時圧縮行程気筒に最初の燃料を噴射することで、エンジンを再始動させる。この停止時圧縮行程気筒への最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とが実行される。プレ噴射は、噴射した燃料がピストンのキャビティ内に収まるようなタイミングで少なくとも1回以上実行されるものであり、その回数および噴射量は、停止時圧縮行程気筒のピストンが圧縮上死点に到達する1圧縮TDC時の筒内圧力の推定値に基づいて決定される。 (もっと読む)


【課題】エンジンのクランクシャフトにフライホイールが装備されている場合でも、エンジンを自動停止させる過程において、エンジンを早期に完全停止させることができる圧縮自己着火式エンジンの始動制御装置を提供する。
【解決手段】ECU50は、フライホイールをクランクシャフトに装備するエンジンを自動停止させる過程において、自動停止条件が成立した時点から所定の遅れ時間が経過した時点に燃料噴射弁15からの燃料噴射を停止し、燃料噴射を停止した時点から所定の待機時間が経過した時点に吸気通路28に設けられた吸気絞り弁30の開度を自動停止条件が成立する前の開度よりも小さくし、待機時間が経過する前に再始動要求があり、且つエンジン回転速度が再始動可能な回転速度であるときは、燃料噴射弁15からの燃料噴射を再開する。 (もっと読む)


【課題】運転手が意図しないアイドルストップアンドゴー(ISG)作動を防ぎ、アイドルストップ後すぐに再稼動するときの発進遅れを減らすことができるISGロジックを提供する。
【解決手段】外部から車両情報の入力を受ける車両情報入力部、および車両情報入力部に入力された車両情報を利用して事前に定められたアイドルストップ条件を満たしているかを判断し、アイドルストップ条件を満たしている場合にはアイドルストップを実行し、アイドルストップの実行後、車両情報を利用して事前に定められたエンジンの再稼動条件を満たしているかを判断し、エンジンの再稼動条件を満たしている場合にはエンジンの再稼動を実行するISG作動ロジックを備える制御部、を含んで構成される。制御部は、ISG作動ロジックを非活性化するISG非活性化判断ロジックをさらに備えている。 (もっと読む)


【課題】車両の外的要因である路面勾配や車両総重量を考慮した制御を行ない、登坂時の失速や平坦路における燃費の悪化を防止することが出来る機械式自動変速装置の変速制御機構の提供。
【解決手段】燃料噴射量検出手段(2)と、燃料噴射制御装置(1)と、車両総重量検出手段(3)と、路面勾配検出手段(4)と、コントロールユニット(10)を備え、前記燃料噴射量検出手段(2)は燃料噴射量の時間特性(傾きG)を演算する機能を有しており、前記コントロールユニット(10)は、路面勾配と燃料噴射量目標値の特性から第1の燃料噴射量目標値(目標燃料噴射量A)を求める機能と、車両総重量と燃料噴射量目標値の特性から第2の燃料噴射量目標値(目標燃料噴射量B)を求める機能とを有している。 (もっと読む)


【課題】エンジン回転数のハンチングをより抑制しつつ急激な要求トルクの変化に対するエンジン回転数の追従性を確保する。
【解決手段】第1エンジン仮目標回転数Ne1*と、第2エンジン仮目標回転数Ne2*とが、エンジン目標回転数Ne*の変化方向が共に同じ方向になるような目標回転数である場合(S380又はS390でYES)には、前回Ne*と、第1上限値Ne1refを超えないように調整(S320〜S370)された目標回転数変化量ΔNe1*,ΔNe2*のうち絶対値の大きい方の値と、を加えた値をエンジン目標回転数Ne*に設定する(S400,S410)。それ以外の場合(S390でNO)には、前回Ne*と、第2上限値Ne2ref(<第1上限値Ne1ref)を超えないように調整(S350〜S370)された目標回転数変化量ΔNe2*と、を加えた値をエンジン目標回転数Ne*に設定する(S400,S410)。 (もっと読む)


【課題】エンジン出力での走行中にドライバの加速要求に基づく目標駆動トルクが増加した場合、モータ走行時と同等の応答性を持ってドライバの要求する目標駆動トルクを実現できる車両の制御装置を提供する。
【解決手段】エンジン1で出力するエンジントルクTeを車両Mの駆動輪5を駆動する駆動トルクTvと発電機2、3を稼働する稼働トルクTgとに分配する車両の制御装置29において、ドライバの要求に基づく目標の駆動トルクTdを増加させる場合、エンジントルクTeモードライバの要求前のエンジントルクに維持しつつ稼動トルクTgの分配比率を減少させることを特徴とする車両の制御装置。 (もっと読む)


【課題】エンジン出力での走行中にドライバの加速要求に基づく目標駆動トルクが増加した場合、モータ走行時と同等の応答性を持ってドライバの要求する目標駆動トルクを実現できるハイブリッド車両のトルク制御装置を提供する。
【解決手段】 エンジン1で出力するエンジントルクTeを車両Mの駆動輪5を駆動する駆動トルクTvと発電機2、3を稼働する稼働トルクTgとに分配する車両の制御装置29において、ドライバの要求に基づく目標の駆動トルクTdを増加させる場合、エンジントルクTeをドライバの要求前のエンジントルクに維持しつつ稼動トルクTgの分配比率を減少させることを特徴とする車両の制御装置。 (もっと読む)


【課題】車両の加速性能を十分に発揮させる。
【解決手段】バッテリの放電パワーPbがバッテリの出力制限Wout未満で且つモータMG2が最大トルクライン上の動作点で駆動しているときには(S330,S340)、エンジンの目標回転数Ne*を所定回転数N1だけ減少させて目標回転数Ne*を再設定すると共に再設定した目標回転数Ne*をパワー用動作ライン上で実現するためのトルクを目標トルクTe*に再設定する(S350,S360)。これにより、エンジンから駆動軸に直接伝達されるトルク(直達トルク)を増加させることができ、直達トルクとモータMG2の最大トルクとの和のトルクにより駆動軸に要求される要求トルクTr*に対応することができる。この結果、車両の加速性能を十分に発揮させることができる。 (もっと読む)


【課題】EGR装置の検査にかかる時間を従来のものより短縮することができるハイブリッド車両の制御装置を提供する。
【解決手段】エンジンが発生した動力をモータジェネレータに伝達することができるハイブリッド車両の制御装置において、ハイブリッドECUは、EGR装置の検査状態にあり、エンジンの出力要求値が予め定められた規定値より大きいことを条件として(ステップS21)、出力要求値を当該規定値に決定する(ステップS22)。 (もっと読む)


【課題】電動走行時におけるアシスト要求からアシストトルク出力までの時間差を低減すること。
【解決手段】ハイブリッド車両の駆動装置は、第一回転電機MG1と、第二回転電機MG2と、差動歯車装置と、入力部材と差動歯車装置の回転要素との駆動連結を解放可能な係合装置と、入力部材に作用するように設けられるワンウェイクラッチOWCとを備え、制御装置は、エンジン停止し、係合装置が解放状態にある車両走行状態において、アシスト要求が発生することを予測する駆動要求発生予測手段と、駆動要求発生予測手段によりアシスト要求が発生することが予測された場合に、入力部材の回転速度がゼロになる方向に第一回転電機MG1の回転速度を変化させるアシスト準備制御手段と、アシスト要求が発生された場合に、ワンウェイクラッチOWCの作用により出力部材にアシストトルクが伝達されるように第一回転電機MG1を制御するアシスト制御手段と、を備える。 (もっと読む)


【課題】減速要求中、エンジン回転数の低下を遅らせることで再加速要求への移行に備えること。
【解決手段】ハイブリッド車両の制御装置は、エンジンEngと、ベルト式無段変速機構3と、ローブレーキL/B又はハイクラッチH/Cと、モータ・ジェネレータM/Gと、左右駆動タイヤLT,RTと、統合コントローラ59と、を備える。ローブレーキL/B又はハイクラッチH/Cは、ベルト式無段変速機構3の下流側の位置に配置され、開放することにより動力伝達を遮断する。モータ・ジェネレータM/Gは、ローブレーキL/B又はハイクラッチH/Cの下流側の位置に配置され、駆動・回生に用いられる。統合コントローラ59は、エンジンEngへの燃料噴射を停止する減速要求時、ローブレーキL/B又はハイクラッチH/Cを開放した後、ベルト式無段変速機構3の変速比をロー側へ変速する減速時制御を行う。 (もっと読む)


【課題】AMTハイブリッド車両で車速の急激な変化があっても、ギア噛み合いの失敗を防止して、迅速なギア噛み合いで動力断絶状態を最小化して運転性を向上させ、かつ、変速機の耐久性を向上させるAMTハイブリッド車両の変速制御方法を提供する。
【解決手段】変速中に入力軸に連結されたモータの慣性と入力軸の制御目標回転速度の変化を考慮してモータでトルクを発生させ、同期化の崩壊を抑制する能動同期維持段階を含んで構成され、能動同期維持段階は、目標変速段へのギア噛み合いが開始された以後、入力軸の制御目標回転速度の変化量にモータの慣性モーメントを掛けて得られたシンクロ負荷トルクが0ではない場合に遂行し、能動同期維持段階で、モータで発生させるトルクは、シンクロ負荷トルクであることを特徴とする。 (もっと読む)


【課題】シフトチェンジの際のドライバビリティを向上させる車両を提供する。
【解決手段】予め記憶されているマップデータmapAが読み込まれ、マップデータmapAと車速Vとが比較され、クランキングを、行うか否かの判断が行われる。カウンタCの値が、始動を遅延させる時刻t1に到達して超えた場合は、エンジン始動遅延要求をOFF制御として、クランキングを行わなわず、制御処理を終了する。マップデータmapAは、充電電力上限値Winがマイナス側に0から離れて、エンジン10を始動させるタイミングを遅延させる判定車速を高く設定する。充電電力上限値Winが低い場合、エンジン10を始動させるタイミングを遅延させる判定車速の閾値が低く設定される。充電電力上限値Winによって、ECU200内のマップデータmapAから、閾値が引き出されて、クランキングを、行うか否かの判断が行われる。 (もっと読む)


【課題】過給装置を有する内燃機関を搭載した車両において、良好な発進制御性を維持できる制御装置を提供する。
【解決手段】ターボチャージャを有するエンジン、手動変速機、エンジンと手動変速機との間に配設されたクラッチ装置を備えた車両に対し、車両発進時、ターボチャージャによる吸気の過給が行われているか否かを判断し、過給が行われている場合には、その過給圧が高いほど、アクセル開度に対するスロットル開度の制御ゲインを小さくする。また、クラッチ装置が完全解放状態である場合には、半クラッチ状態である場合に比べて、アクセル開度に対するスロットル開度の制御ゲインを小さくする。これにより、吸気の過給時における車両発進時の挙動を抑制し、良好な発進制御性を維持する。 (もっと読む)


【課題】作業要素の初動時の操作性を向上させるハイブリッド式ショベルの制御方法を提供すること。
【解決手段】本発明の実施例に係るハイブリッド式ショベルの制御方法は、レバー信号とエンジン出力状態とに基づいて、通常時のエンジン回転数制御指令と通常時よりも高い初動時のエンジン回転数制御指令とを切り換える。初動時のエンジン回転数制御指令は、レバー信号と傾転角とに対応するエンジン回転数を含む。アシストモータ12は、初動時のエンジン回転数制御指令に基づいてエンジン11をアシストする。 (もっと読む)


【課題】ブリッピング操作による変速期間中のショックを抑制すると共に、変速期間後にアクセルの操作に応じた動作に迅速に移ることが可能な車両の制御装置を提供する。
【解決手段】本発明の車両の制御装置は、アクセルの操作量に基づいてスロットルバルブの開度を決定する開度決定部57と、エンジンの回転速度の下降を伴う変速期間中において、スロットルバルブの開度が、伝達経路からエンジンに入力される負荷トルクよりも出力トルクが大きくなる値から、出力トルクと負荷トルクとが等しくなる境界値に向かって変化する場合に、スロットルバルブの開度の時間変化率を低減する変化抑制部59と、を備える。 (もっと読む)


【課題】圧縮自己着火式エンジンを再始動させる際に、エンジンの再始動条件に応じて、常に最適の態様でエンジンを再始動させる。
【解決手段】エンジンを再始動させる際に(ステップS21でYES)、エンジンの停止時に圧縮行程にある停止時圧縮行程気筒のピストンの停止位置が相対的に下死点寄りに設定された基準停止位置範囲内にある場合であっても(ステップS22でYES)、運転者が発進要求をしていないときは(ステップS23でNO)、エンジンの停止時に吸気行程にある停止時吸気行程気筒が圧縮行程を迎えたときに該気筒に燃料を噴射することによりエンジンを再始動させ(ステップS25)、運転者が発進要求をしているときは(ステップS23でYES)、停止時圧縮行程気筒に燃料を噴射することによりエンジンを再始動させる(ステップS24)。 (もっと読む)


【課題】 内燃機関を始動して電動機と併用するハイブリッド走行に切り替える際に、要求駆動力に応じた最適な駆動ギヤ段に高応答で変速制御する。
【解決手段】 電動機のみを用いた車両走行中にアクセルペダルオン操作が行われたことに応じて、現在の変速段と異なる第2変速機構の変速段が選択されて内燃機関の押し掛け始動が行われた場合に、押し掛け始動に使用した変速段を維持したまま内燃機関のみを用いて一時的に車両を走行させる。その間に、第1変速機構において車速に応じた最適な変速段に切り替えておく。これにより、押し掛け始動に使用した変速段から最適な変速段に一気に移行させながら、電動機と内燃機関とを併用したハイブリッド走行に車両の走行状態を切り替えできることから、ハイブリッド走行に切り替える際に最適な駆動ギヤ段に高応答で変速制御することができるようになる。 (もっと読む)


【課題】運転者がアクセルを踏込んだ速度に応じて設定される目標クラッチトルクでクラッチを制御することにより運転者の要求する加速の実現が可能である変速機の自動クラッチ制御装置およびその変速制御方法を提供する。
【解決手段】クラッチ40と、目標クラッチトルク演算部3aと、変速制御部3cと、アクセル踏込速度検出部2aと、原動機回転数検出部2cと、入力軸回転数検出部3dと、アクセル踏込速度Vacが1つ以上の所定の踏込速度閾値を超えるか否かを判定する踏込速度閾値判定部3eと、いずれかの踏込速度閾値を超えた場合に入力軸と原動機4とを切離後、成立された低速ギヤ段によって増加している入力軸回転数に一致させるよう原動機回転数Neを増加制御する原動機回転数増加制御部3fと、目標クラッチトルクTcaをアクセル踏込速度Vacの大きさに応じて変更演算する目標クラッチトルク変更演算部3gと、を備える。 (もっと読む)


1 - 20 / 673