説明

Fターム[3G384EB14]の内容

内燃機関の複合的制御 (199,785) | 演算処理B(制御パターン) (16,584) | 初期値設定、リセット (399)

Fターム[3G384EB14]に分類される特許

21 - 40 / 399


【課題】排気通路に配設された触媒の酸素吸蔵量を推定するとともに、その推定酸素吸蔵量を使用して機関を制御する。
【解決手段】制御装置は、機関の運転中に機関停止要求が発生したか否かを判定し、機関停止要求が発生した場合に「触媒の実際の酸素吸蔵量」が「最大の量又は最小の量」になるように、その触媒に「過剰な酸素又は過剰な未燃物」を供給する。そして、制御装置は、触媒の酸素吸蔵量が「前記最大の量又は前記最小の量」に到達したと推定される時点にて、前記機関の回転を停止させる。加えて、制御装置は、機関の回転を停止させた時点にて推定酸素吸蔵量を、予め取得された最大酸素吸蔵量に基く値又は最小酸素吸蔵量である「0」に設定することにより、推定酸素吸蔵量を初期化する。 (もっと読む)


【課題】上流側空燃比センサの出力値を用いて精度のよい空燃比不均衡指標値を取得することのできる燃料噴射装置を提供する
【解決手段】排気集合部HKと三元触媒43との間の位置に配設される上流側空燃比センサ56を備える。制御装置は、三元触媒に流入する排ガスの空燃比が目標空燃比に一致するように燃料噴射弁33から噴射される燃料の量を上流側空燃比センサの出力値に基いてフィードバック補正する。制御装置は、上流側空燃比センサの出力値に対してハイパスフィルタ処理を施すことにより、上流側空燃比センサの出力値に含まれる機関の中心空燃比の変動による成分を除去したハイパスフィルタ処理後出力値VHPFを取得する。制御装置は、そのハイパスフィルタ処理後出力値VHPFに基いて、気筒別空燃比の不均一性の程度が大きいほど大きくなる空燃比不均衡指標値を取得する。 (もっと読む)


【課題】アイドルストップが行われる場合にも、凝縮水の影響を考慮して、触媒温度を正確に推定できるようにする。
【解決手段】機関始動時からの吸気流量を積算して吸気流量積算値SUMQIを算出する(S12)。アイドルストップ中は、所定時間ΔTが経過するまで蒸発水が新たに発生(増加)しないと判断して、吸気流量積算値SUMQIをアイドルストップ開始時の値に保持し(S15)、所定時間ΔTが経過すると吸気流量積算値SUMQIを0にリセットする(S14)。吸気流量積算値SUMQIが判定値SQASLを超えているときには、蒸発水が既に蒸発していると判断し、触媒温度に関連する車両運転状態に応じて触媒温度を推定し(S17)、判定値SQASL以下であれば、蒸発水が残存していると判断して、触媒温度を外気温相当値に保持する(S18)。 (もっと読む)


【課題】2つの規制部材により規制される可動部材の可動範囲内において一方の規制部材に対応する部位側に異物の噛み込みが生じている場合にこれを的確に判定することができる。
【解決手段】電子制御装置5は学習条件成立時にLo端側ストッパ22に向けてコントロールシャフト3を駆動し、シャフト3の変位停止判断時のストロークカウンタ値を基準回転位相として学習する。電子制御装置5への給電停止に際してシャフト3のストロークカウンタ値(初期基準位置)を学習する。電子制御装置5への給電時に、直前の給電停止時に学習した初期基準回転位相からストッパ22に向けてシャフト3を駆動し、初期基準回転位相からシャフト3の変位が停止したと判断されるまでのシャフト3の変位量(片側変位量)を算出する。片側変位量が初期基準回転位相よりも小さい場合に、シャフト3の可動範囲内においてストッパ22に対応する部位側に異物の噛み込み有りと判定する。 (もっと読む)


【課題】検出されたアクチュエータの駆動位置をイニシャライズ処理により実際の駆動位置に精度よく対応させることを可能としつつ、そのイニシャライズ処理の実行頻度を高くする。
【解決手段】電子制御装置21は、位置センサ35により検出されたアクチュエータ15の駆動位置に関する情報についての異常の有無を判断し、異常有りの旨判断されたときにはRAM21aに異常履歴を記憶する。そして、電子制御装置21のRAM21aに異常履歴が記憶されているか否かに応じて、位置センサ35により検出されたアクチュエータ15の駆動位置を実際の駆動位置に対応させるためのイニシャライズ処理として二種類のイニシャライズ処理が使い分けられる。すなわち、異常履歴があるときにはフルストロークでのイニシャライズ処理が行われる一方、異常履歴がないときにはショートストロークでのイニシャライズ処理が行われる。 (もっと読む)


【課題】イニシャライズ処理の実行に際して機関バルブのバルブ特性が大きく変化するとき、その変化が機関運転に及ぼす影響を小さく抑える。
【解決手段】位置センサ35により検出されたアクチュエータ15の駆動位置を実際の駆動位置に対応させるイニシャライズ処理においては、アクチュエータ15のLo端からHi端への移動が行われる。このイニシャライズ処理の実行条件には、エンジン1に対する加速要求の増加量が判定値a以上という条件が含まれる。エンジン1に対する加速要求の増加量が大きい状況下では、エンジン運転の変動が大きくなる関係から、イニシャライズ処理でのアクチュエータ15の上記移動に伴って吸気バルブ9の最大リフト量及び作動角が大きく変化したとしても、その変化によるエンジン運転の影響が際だつことはない。言い換えれば、イニシャライズ処理でのアクチュエータ15の上記移動によるエンジン運転への影響が相対的に小さくなる。 (もっと読む)


【課題】尿素水レベルセンサとして、液面高さを段階的に検出するものを用いた場合であっても、フロートのスタックを検出することが可能なSCRシステムを提供する。
【解決手段】尿素水の噴射量を積算して、尿素水噴射量積算値を算出する尿素水噴射量積算部2と、検出手段202からの検出値が変化したときに、尿素水噴射量積算値をリセットする積算値リセット部3と、尿素水噴射量積算値が所定の判定用閾値を超えたときに、レベルセンサ120に異常があると判断する異常判定部4と、を備えたものである。 (もっと読む)


【課題】点火プラグ周りに可燃混合気を形成し成層燃焼運転が行われる直噴火花点火式内燃機関において、点火プラグの状態が悪化することによる燃焼変動や失火を防止する。
【解決手段】この発明による内燃機関の制御装置は、内燃機関の燃焼室に直接燃料を噴射する燃料噴射弁と、燃料噴射弁からの燃料噴射量を制御する燃料噴射量制御手段と、燃焼室に流入する空気の吸気流量を制御する吸気流量制御手段と、燃料噴射弁から噴射された燃料と燃焼室に流入する空気とで形成される混合気に火花点火する点火プラグと、点火プラグの状態を検出する点火プラグ状態検出手段とを備え、点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、成層燃焼運転のまま、燃焼室の混合気濃度を高めるようにしたものである。 (もっと読む)


【課題】タンブル流動の中心位置を推定し、その推定したタンブル流動の中心位置に基づいて内燃機関を制御できる内燃機関の制御装置を提供することを目的とする。
【解決手段】この発明による内燃機関の制御装置は、内燃機関の筒内に直接噴射される燃料を点火プラグの近傍に案内するキャビティを冠面に備えたピストンと、前記内燃機関の筒内に直接燃料を噴射する燃料噴射弁と、前記内燃機関の筒内にタンブル流動を形成させるタンブル流動制御手段と、前記内燃機関の吸気バルブを通過する吸気の流速を演算する吸気流速演算手段と、前記演算された吸気の流速に応じて、前記筒内のタンブル流動の中心位置を推定するタンブル流動中心位置推定手段とを備え、前記推定したタンブル流動の中心位置に基づいて前記内燃機関を制御するようにしたものである。 (もっと読む)


【課題】 グロープラグの通電制御とエンジン始動装置の制御とを調整して、適切なグロープラグの抵抗値の特性検知を可能とし、これ以降に、検知した特性に基づく適切なグロープラグの通電制御を可能とした、グロープラグ・エンジン始動装置制御システムを提供する。
【解決手段】グロープラグ・エンジン始動装置制御システム1は、グロープラグGPの通電制御と共に、エンジンを始動させる始動装置を制御する。グロープラグへの通電を切り替えるスイッチング素子22と、グロープラグの通電時の抵抗値変化特性を検知する特性検知手段23と、検知した特性に応じて、スイッチング素子22を調整してグロープラグへ通電させるグロープラグ調整通電手段22,ステップGB2と、始動装置に始動を指示する始動指示手段ステップE4と、特性検知手段での特性検知を、始動指示手段による始動指示に優先させる優先手段ステップGA6,GD9,E2,E3と、を備える。 (もっと読む)


【課題】ノックの発生時、ノックを防止すべく点火時期を遅角するとともに、点火時期の遅角に伴うトルクの低下を吸入空気量の増加によって補償しつつ、吸入空気量を増加させることがノックの発生を助長してしまうのを防止する。
【解決手段】点火時期の遅角に伴うトルクの低下を吸入空気量の増加によって補償するように、点火時期の変化に連動して目標空気量を変化させ、目標空気量に従ってスロットルを操作する。そして、目標空気量が急増した場合には、スロットルを一旦オーバーシュートさせてから目標空気量に対応する定常開度に収束させる。ただし、点火時期の遅角がノックを防止するための遅角である場合には、スロットルのオーバーシュート操作は禁止する。 (もっと読む)


【課題】浮動小数点形式のデータの演算結果が非数となった場合でも、当該制御および他の制御における制御不良を防止する。
【解決手段】CPUは、吸気制御初期化処理(ステップS1301)において、非数が発生した変数を初期化するとともに、同変数を参照して算出される変数など、非数が発生した変数によって影響を受ける変数を一括して初期化する。本処理で初期化する変数は、必ずしも吸気制御処理内で用いられる全ての変数でなくともよい。非数が発生した変数によって影響を受ける変数、例えばある変数が非数となると派生的に非数となる変数などを初期化することもできる。その他の任意の変数を初期化対象としてもよい。 (もっと読む)


【課題】計測室内圧力の検出感度の低下を抑制しつつ、計測室内の異常な圧力変動を抑制することで、噴射量の計測精度の悪化を防止する。
【解決手段】Zeuch法を用いて噴射量を計測する噴射量計測装置において、計測室11を有する容器10に容積可変機構17、18を設ける。そして、噴射量を計測する前に、計測時の所定噴射条件で燃料噴射弁13から燃料13aを多段噴射させたときに発生する計測室11内の圧力変動の変動幅を計測するとともに、計測した変動幅が所定値よりも小さくなるまで、容積可変機構17、18によって計測室11の容積を徐々に増大させることにより、噴射量を計測する際の所定噴射条件に適した計測室11の容積を探索する。これにより、計測室容積が不必要に大きくなって、計測室内圧力の検出感度が低下するのを抑制しつつ、計測室内の異常な圧力変動を抑制でき、噴射量の計測精度の悪化を防止できる。 (もっと読む)


【課題】スロットル弁の実開度と目標開度との偏差が大きくなっても、安定した運転を可能にする。
【解決手段】エンジン制御システム20が、スロットル弁22を駆動する弁アクチュエータ23、燃料供給装置24、点火装置25、入力部材7の操作位置を検出する操作位置検出装置44,45、実開度を検出するスロットル位置検出装置46,47、及び入力部材7の操作位置に応じてスロットル弁22の目標開度を求め、実開度が目標開度となるよう弁アクチュエータ23を制御するフィードバック制御を実行する制御装置19、を備える。制御装置19は、実開度と目標開度との偏差が所定値以上であるときに、フィードバック制御を継続しつつ、燃料供給装置24及び点火装置25の少なくとも一方を制御してエンジン12の出力を低下させる出力低下制御を実行する出力低下制御部56を有する。 (もっと読む)


【課題】負荷の駆動を制御すると共に、その制御が正常に行われない異常状態であるか否かを判定して、異常状態と判定した場合には負荷を強制的に所定の待避状態にさせるよう構成された電子制御装置において、異常状態との判定によって負荷を待避状態にさせた後は、その待避状態を確実に保持できるようにすることを目的とする。
【解決手段】第1判定回路10及び第2判定回路20のいずれも、マイコン2からの判定用データが不合格データならばそれぞれ閉塞信号をHレベルにセットする。これによりモータドライバ3への第3閉塞信号はHレベルにセットされ、モータ5は強制的に停止される。その後、マイコン2の異常によって意図しないリセットコマンドが受信されると、第1閉塞信号はLレベルにクリアされてしまうが、第2閉塞信号はHレベルのまま保持され、よって第3閉塞信号もHレベルのまま保持される。 (もっと読む)


【課題】ユーザに制御結果を誤解させない学習制御の技術を提供する。
【解決手段】車両の電源から導かれる第1系統より電力の供給を受け、不揮発性の第1記憶部にデータを書き込むデータ書込装置は、書込要求に応答して、電源から導かれる第2系統より電力の供給を受け、データを記憶可能な第2記憶部に記憶された書き込みの対象データを、第1記憶部に書き込み、主電源からの電力供給が停止した後に開始する際は所定の初期表示を行う表示装置に、第1記憶部へのデータの書込結果を表示させ、第1記憶部に書込む際に、第1系統からの電力供給が停止された後に開始された場合は、第2記憶部に記憶された対象データを第1記憶部に書き込む第2書込手段は、書込要求を制御手段から受け付けたときに有効化し、書込要求をユーザから受け付けたときに有効化しない。このため、ユーザに制御結果を誤解させない学習制御を実現することができる。 (もっと読む)


【課題】ピストンの頂部にキャビティが形成される場合において筒内ガスの温度を精度良く推定し得る内燃機関の筒内ガス温度推定装置を提供すること。
【解決手段】筒内ガス温度の推定に際し、クランク角度がTDCを含むCA1〜CA2の範囲外では、筒内ガスの全てがキャビティ外に存在すると仮定され、シリンダ側壁に対するスワール流速V1に基づく熱伝達率h1を用いて算出される「筒内ガスとシリンダ側壁との間の熱伝達量」に基づき筒内ガスの熱損失量が算出される(ステップ1018)。クランク角度がCA1〜CA2の範囲内では、筒内ガスの全てがキャビティ内に存在すると仮定され、スピンアップにより増速されたキャビティ側壁に対するスワール流速V2(>V1)に基づく熱伝達率h2(>h1)を用いて算出される「筒内ガスとキャビティ側壁との間の熱伝達量」に基づき筒内ガスの熱損失量が算出される(ステップ1036)。 (もっと読む)


【課題】エンジンの行程判別を確実に行えるようにする。
【解決手段】エンジンの制御装置は、クランク軸が1回転する間の吸気管の圧力の最大値P2と最小値P1を測定し、その差を変動幅DPMTDCとして算出する。この変動幅DPMTDCを記憶しておき、次にクランク軸が1回転したときの変動幅DPMTDCとの大小を比較する。変動幅DPMTDCの大小の変化が連続して3回発生したら、行程判別を行って変動幅DPMTDCが大から小に変化したときに、その工程を膨張・排気行程とする。その後は工程判別結果に基づいて点火処理を実施する。 (もっと読む)


【課題】機関のオーバーヒートを防止するものである。
【解決手段】実際のスロットル弁開度が機関の運転状態に基づいて決定される通常目標スロットル弁開度(暫定目標スロットル弁開度TAtgtz)に一致するようにスロットル弁を制御する(ステップ425、475)。制御装置は、冷却水温THWが「冷却水温上昇率ΔTHWが大きいほど小さくなる冷却水温閾値Tth1」より高い場合(ステップ430)、実スロットル弁開度が「前記通常目標スロットル弁開度よりも小さい発熱量抑制スロットル弁開度としての上限スロットル弁開度TAmax」に一致するように、スロットル弁を制御する(ステップ440〜470)。上限スロットル弁開度TAmaxは、冷却水温THWが高いほど大きくなり且つ冷却水温上昇率ΔTHWが大きいほど大きくなるスロットル弁閉弁速度ΔTA1にて減少させられる(ステップ455)。 (もっと読む)


【課題】基本学習領域内における内燃機関の経年劣化によるノック発生への影響のばらつきが大きい領域において、学習値の更新不足に起因して同学習値がノック発生を抑制するための値として不適切になることを回避する。
【解決手段】点火時期指令値STの算出にはフィードバック項F及びその徐変値Fsmに基づき更新される基本学習値AG(i)が用いられる。この基本学習値AG(i)としては現在のエンジン運転状態に対応する基本学習領域iの値が用いられる。また、基本学習領域i内に設定された複数の多点学習領域nでは、同領域nに対応した多点学習値AGdp(n)が上記点火時期指令値STの算出に用いられるとともに徐変値Fsmに基づき更新される。現在のエンジン運転状態に対応した多点学習領域nが所定の領域nから別の領域nに切り換えられたときには、徐変値Fsmとフィードバック項Fとの一方がクリアされ、他方がクリア禁止される。 (もっと読む)


21 - 40 / 399