説明

Fターム[4C096BA06]の内容

磁気共鳴イメージング装置 (34,967) | パルス系列 (1,885) | エコー信号を利用 (378) | 勾配磁場によるエコー (86)

Fターム[4C096BA06]に分類される特許

1 - 20 / 86


【課題】撮像範囲を簡易に設定することができる磁気共鳴イメージング装置を提供することである。
【解決手段】実施形態に係る磁気共鳴イメージング装置は、収集部と、検出部と、導出部と、撮像制御部とを備える。収集部は、対象臓器を内包する範囲の3次元画像データを収集する。検出部は、3次元画像データから対象臓器の上端位置及び下端位置を検出する。導出部は、対象臓器の上端位置及び下端位置に基づいて、3次元画像データ収集後の後続撮像の撮像範囲を導出する。撮像制御部は、撮像範囲に従って後続撮像の実行を制御する。 (もっと読む)


【課題】撮像条件を容易かつ適切に設定することを可能とすることを可能とする。
【解決手段】実施形態の磁気共鳴イメージング装置は、標識化、取得、制御、再構成、表示および受付の各手段を備える。標識化手段は、被検体の撮像領域内の一部の標識化領域の脳脊髄液に含まれるスピンを標識化を行う。取得手段は、所定のパルスシーケンスにより撮像領域に含まれるスピンに関するエコー信号を取得する。制御手段は、標識化を行った時点からエコー信号の取得のサイクルを複数回行うように標識化手段および取得手段を制御する。再構成手段は、複数回のサイクルのそれぞれにて取得されたエコー信号に基づいて撮像領域内の複数の画像を再構成する。表示手段は、複数の画像のうちの少なくとも1つを位置決め用画像として表示する。受付手段は、位置決め画像上で撮像断面の指定を受け付ける。 (もっと読む)


【課題】フルオロスコピー等の連続撮像において、撮影時間を延長することなく、傾斜磁場の非線形性や磁場不均一に起因するアーチファクトを低減する。
【解決手段】MRI装置は、k空間における1以上の計測軌跡に対応するエコーデータを、該計測軌跡のk空間座標軸に対する角度を変えながら計測し、角度毎に少なくとも一つの計測データを収集する撮影手段と、前記計測データをk空間に再配置し画像再構成する画像再構成手段とを備え、撮影手段は、被検体の所望の領域について時系列の撮影を行い、複数組の計測データを取得する。画像再構成手段は、k空間への計測データの再配置に先立ち、角度毎に、計測データから選択した基準データをもとに補正用位相を算出し、算出された補正用位相を用いて計測データを位相補正する。 (もっと読む)


【課題】MRIにおいて実際の傾斜磁場波形を高精度で計算し、この傾斜磁場波形に基づいてリグリッディング処理を高精度に実行する。
【解決手段】一実施形態では、MRI装置は、傾斜磁場算出部と、リグリッディング処理部とを備える。傾斜磁場算出部は、傾斜磁場コイルに供給される傾斜磁場電流の波形を撮像シーケンスの条件に基づいて算出し、傾斜磁場コイルが相互誘導を生じる相互インダクタンスと、傾斜磁場電流の波形とに基づいて、読み出し方向の傾斜磁場波形を算出する。リグリッディング処理部は、核磁気共鳴信号において、読み出し方向の傾斜磁場の強度の時間積分値が非線形な時間帯で収集された部分がサンプリングされるように、且つ、k空間データにおける各マトリクス要素に対応するサンプリング期間までの前記時間積分値が等間隔になるように、k空間データを生成又は再配列する。 (もっと読む)


【課題】従来の灌流検査法によらないダイナミックMRI造影剤検査によって、簡易かつ比較的正確に血液灌流情報を得る。
【解決手段】MRI装置は、磁場発生器と、高周波パルスを照射するパルス送信器330と、エコー信号を受診する受信器340と、被験者の血流情報を演算する血流情報演算部360と、血流情報に基づいて画像を再構成する画像データ生成部370と、画像を表示する表示デバイス390とを有する。パルス送信器330は、造影剤の注入前および注入後に高周波パルスを照射し、受信器340は、造影剤の注入前および注入後のそれぞれについて第1エコー信号および第2エコー信号を取得し、血流情報演算部360は、造影剤注入前および注入後のエコー信号強度から求められた、造影剤注入後の経過時間tにおける横緩和速度の変化ΔR2*(t)に基づいて、血管内の血液量および血管外への漏出量を算出する。 (もっと読む)


【課題】MRI装置において、1個の撮像位置で異なるスラブを設定する場合や、複数の撮像位置でそれぞれスラブを設定する場合に、操作者がより簡易な操作で、スラブ毎に異なるスライス条件を設定できること。
【解決手段】MRI装置10Aは、被検体の所要の撮像位置の撮像を行なって、位置決め画像を生成する元画像生成部63と、複数の撮像位置の撮像位置毎にスライス条件に関するパラメータの推奨値を記憶する記憶装置に記憶された、所要の撮像位置に対応する推奨値に基づいてスラブ領域及びスライス領域を設定し、位置決め画像上に表示させる領域設定部65eと、スライス領域に基づいてスライス条件を確定させるスライス条件確定部65fと、確定されたスライス条件に従って、スラブ領域の撮像を実行する本撮像実行部66Aと、を有する。 (もっと読む)


【課題】血管等の関心組織の様々な構造を分かり易く示した画像を得る。
【解決手段】シーケンサ10が、傾斜磁場電源7、送信器9Tおよび受信器9Rは、それぞれ同一の被検体の同一の領域についての画像に関し、関心組織が背景よりも高信号である第1のデータと関心組織が背景よりも低信号である第2のデータとをそれぞれ取得する。演算ユニット11は、第1のデータと第2のデータとに基づいて、関心組織の背景に対するコントラストが第1および第2のデータのそれぞれよりも高い第3のデータを生成する。 (もっと読む)


【課題】核磁気共鳴法(NMR)及び磁気共鳴画像法(MRI)を用いた骨梁強度を測定するための方法を提供する。
【解決手段】インビトロまたはインビボの核磁気共鳴及び/または磁気共鳴画像により骨試料内部の分子拡散の効果を測定することによって骨梁の構造に関するパラメータを導出する。分子拡散の効果を測定にはDDIF(Decay from diffusion inthe internal field(内部磁場中での拡散による減衰))および/またはパルス磁場勾配(PFG)法を利用する。本手順は、骨梁骨の構造の完全な高解像度画像を必要とすることなく骨梁骨についてトポロジカルな情報を与える非侵襲的な検査法であって、臨床での使用に適合したものである。 (もっと読む)


【課題】ディフェーズまたはリフェーズにより収集された磁気共鳴信号からでは得られなかった有益な情報を得ることを可能とする。
【解決手段】収集手段、再構成手段、定量化手段および生成手段を備える。収集手段は、被検体から放射される磁気共鳴信号を収集する。再構成手段は、収集手段により収集された磁気共鳴信号に基づいてディフェーズ画像およびリフェーズ画像を少なくとも1枚ずつ再構成する。定量化手段は、再構成手段により再構成されたディフェーズ画像およびリフェーズ画像の双方に基づいて前記被検体に関する特性を定量化する。生成手段は、定量化手段により定量化された特性を表す複数種の定量化画像を生成する。 (もっと読む)


【課題】汎用性が高く、画像品質を向上可能な磁気共鳴イメージング装置を提供する。
【解決手段】静磁場空間において被検体にRFパルスを送信することによって前記被検体において発生する磁気共鳴信号をイメージングデータとして得るイメージングシーケンスを実施し、前記イメージングシーケンスの実施によって得られた前記イメージングデータに基づいて、前記被検体の画像を生成する磁気共鳴イメージング装置であって、前記イメージングシーケンスを実施する共に、前記被検体において流れる流体の速度に応じて前記イメージングデータの信号強度を変化させるように、プリパレーションパルスを送信するプリパレーションシーケンスを前記イメージングシーケンスの実施前に実施するスキャン部を含み、前記スキャン部は、前記被検体の心拍運動において心収縮期に前記プリパレーションシーケンスを実施し、前記心拍運動において心拡張期に前記イメージングシーケンスを実施する。 (もっと読む)


【課題】磁化の緩和時間の違いを利用して血液やCSF等の流体や脂肪を含む組織をより良好なコントラストで描出させることである。
【解決手段】 本発明の実施形態に係る磁気共鳴イメージング装置は、データ収集手段及び画像データ生成手段を備える。データ収集手段は、磁気共鳴イメージングデータの収集タイミングにおいて流体の縦磁化と前記流体と異なる組織の縦磁化の符号が互いに逆となる撮像条件で前記磁気共鳴イメージングデータを収集する。画像データ生成手段は、複素信号として収集された前記磁気共鳴イメージングデータの実部を用いて画像再構成処理を行うことによって前記流体及び前記組織が描出された画像データを生成する。 (もっと読む)


【課題】長いTEに対応する画像データを収集する際に生じるアーチファクトを低減することである。
【解決手段】本発明の実施形態に係る磁気共鳴イメージング装置は、イメージング手段及び画像処理手段を備える。イメージング手段は、同一のイメージング領域から異なる複数のエコー時間で複数の磁気共鳴信号を収集することによって前記イメージング領域の複数の画像データを生成する。画像処理手段は、前記複数の画像データから前記イメージング領域の少なくとも一部の同一の位置における最大の画素値を抽出することによって最大画素値の画像データを生成するか又は最小の画素値を抽出することによって最小画素値の画像データを生成する。 (もっと読む)


【課題】マルチエコーのグラディエントエコー系シーケンスを用いて被検体のT2*値を測定する際の、グラディエント・シム調整の誤差に起因する測定誤差を低減する。
【解決手段】RFパルスRF1印加後の複数の読出し勾配磁場RO2〜RO5の各印加前または各印加と同一期間に、補正用勾配磁場SS3〜SS6をスライス軸方向に印加するシーケンスを、位相エンコード勾配磁場PE1,PE2を順次変えながら、かつ、補正用勾配磁場SS3〜SS6を複数ステップで順次変えながら繰返し実施する。次に、エコー時間TE1〜TE4と補正用勾配磁場SS3〜SS6との組合せ毎に、読み出されたエコー信号をフーリエ変換して画像PTEi,Gvjを生成し、さらに、エコー時間毎に、同一のエコー時間について生成された複数の画像PTEiの平準化画像QTEiを求める。そして、各平準化画像QTEiにおける同一画素の画素値を基に、当該画素の物質のT2*値を特定する。 (もっと読む)




【課題】撮像時間を短縮するとともに、静止組織の信号強度が精度良く消された流体画像を生成する。
【解決手段】実施形態に係るMRI装置は、データ収集部と、画像再構成部と、基準画像生成部と、流体画像生成部とを備える。データ収集部は、撮像領域の少なくとも上流部分にRF波を印加することで該撮像領域に流入する流体の標識化を行い、前記RF波を印加してから所定の待ち時間が経過した後に磁気共鳴データの収集を行うタグモードを前記待ち時間を変えながら繰り返し実行する。画像再構成部は、前記タグモードで収集された磁気共鳴データに基づいて、それぞれ複数の異なる前記待ち時間に対応する複数のタグ画像を再構成する。基準画像生成部は、前記複数のタグ画像に基づいて基準画像を生成する。流体画像生成部は、前記複数のタグ画像それぞれと前記基準画像との差分画像を流体画像として生成する。 (もっと読む)


【課題】体動補正が可能な磁気共鳴イメージング装置を提供する。
【解決手段】ステップS1において、トレーニングスキャンのタギングシーケンスTS〜TSにより得られたデータに基づいて、変位量Δx(u’,x,y)およびΔy(u’,x,y)を算出する。ステップS2において、本スキャンのナビゲータシーケンスNVにより得られた横隔膜位置に基づいて、n回目の位相エンコーディングの際の変位量Δx(u,x,y)およびΔy(u,x,y)を算出する。ステップS3において、ステップS2で算出した変位量Δx(u,x,y)およびΔy(u,x,y)と、本スキャンのイメージングシーケンスにより得られたk空間のデータS(t,n)とに基づいて、画像データf(x,y)を算出する。 (もっと読む)


【課題】被検体の動きに起因するアーチファクトを抑制した磁気共鳴画像を短時間で撮像すること。
【解決手段】シーケンス情報生成部26aは、データ収集領域を形成する複数のデータ収集軌跡のうち、当該データ収集領域内の少なくとも外側に位置するデータ収集軌跡のデータ収集開始位置がk空間の原点近傍におけるデータ収集位置より同一の位相エンコード方向にて離れた位置となるように位相エンコードの傾斜磁場を強く設定する。さらに、シーケンス情報生成部26aは、データ収集開始時に印加される位相エンコード用傾斜磁場とは逆符号の傾斜磁場から同符号の傾斜磁場へと磁場強度が変化する位相エンコード用傾斜磁場をデータ収集中に印加させるシーケンス情報を生成する。 (もっと読む)


磁気共鳴画像(MRI)システムで対応する複数のスライス位置から同時に取得される画像データから、対象を示す複数の画像を再構成する方法が、提供される。画像データは、複数のスライス位置に対するRFエネルギーの適用後に取得される。RFエネルギーは、各スライス位置に異なる位相を提供するために、調整される。参照画像データは、画像データの取得に対して各スライス位置を励起するために用いられた位相と同じ位相を有するRFエネルギーの適用後に、各スライス位置に対して取得される。エイリアス画像は画像データから再構成され、参照画像は参照画像データから再構成される。それら両方の画像セットを用いて、非エイリアス画像が、複数のスライス位置のそれぞれに対して生成される。 (もっと読む)


核過分極化された造影剤を生成するディスペンサが提供される。ディスペンサは、複合物を受けるチャンバを有する。フォトニック過分極システムは、軌道角運動量を具備するOAMフォトニックビームを生成し、複合物における核過分極を生成するため、上記OAMフォトニックビームを上記チャンバへと向けるよう構成される。チャンバは、過分極化された複合物が出されることができる出力部を持つ。過分極が体外で生成されるので、生物組織におけるOAMフォトニックビームの浸透深度は、本発明に関しては無関係である。
(もっと読む)


1 - 20 / 86