説明

Fターム[4D050AB07]の内容

酸化・還元による水処理 (19,692) | 酸化又は還元対象物質 (4,141) | COD,BOD,SS,TOC (302)

Fターム[4D050AB07]に分類される特許

101 - 120 / 302


【課題】懸濁物質だけでなく溶解性汚染物質、特に溶解性有機物や重金属も除去することができるミネラル溶液を提供する。また、取り扱いが簡便で、狭い土地や既設敷地内においても利用でき、環境に負担をかけない汚水浄化方法を提供する。
【解決手段】花崗岩、玄武岩、かんらん岩及び粘土鉱物を、無機酸中で溶出させることによってミネラル溶液を得る。また、該ミネラル溶液を汚水に添加して、汚水に含まれる溶解性有機物及び/又は重金属を凝集、沈殿させる。 (もっと読む)


【課題】 本発明は各種有機系汚染物、悪臭成分、細菌類などの有害成分を含有する液の無害化処理方法及び装置を提供する。
【解決手段】 (A)有害成分含有液に水溶性酸化剤又はオゾン微粒子気泡を添加、混合し、(B)紫外線照射条件下、(C)前記含有液、水溶性酸化剤又を吸着し、かつ有害成分を吸着する(1)ペンタシルゼオライト、(2)ゼオライトβ、(3)超安定Y型ゼオライト(USY)、(4)メソポーラスシリケート、(5)超安定モルデナイト(USM)、(6)シリカゲルの群から選ばれた少なくとも一種の吸着剤を充填した充填塔に流過させ、(D)液中の有害成分を水溶性酸化剤又はオゾンとの吸着反応の作用により無害化する、ことを特徴とする有害成分含有液の処理方法及び装置。 (もっと読む)


【課題】消費するエネルギー量が小さく、処理能力が高い水処理技術を提供する。
【解決手段】被処理水を貯めるバブル導入槽、該バブル導入槽内の該被処理水中にナノバブルまたはマイクロナノバブルを発生させる複数のバブル発生機、該ナノバブルまたはマイクロナノバブルを含有せしめた該被処理水を貯め、酸化還元電位計を備え、かつ、ポリビニルアルコール担体が充填されている処理水槽、および該酸化還元電位計により測定される該被処理水の酸化還元電位に基づいて該複数のバブル発生機のそれぞれを動作または停止させるバブル発生機制御手段を備えている水処理装置を用いる。 (もっと読む)


【課題】有機排水の処理効率を向上可能な有機排水処理方法を提供する。
【解決手段】被処理水として有機排水を曝気槽11に導入し、発泡体樹脂組成物の少なくとも表面に光触媒を担持させた光触媒担持体13を被処理水24中で流動させながら有機排水24に曝気処理を行うこと、及び、曝気槽11の側面及び/又は底面に形成された光入射口から光ダクト12を用いて曝気槽11の内部に光を照射することを含む。曝気処理は、曝気槽11の底面に配置された散気管14を通じて行うことができる。 (もっと読む)


【課題】小スペースでの曝気処理が可能な有機排水処理方法を提供する。
【解決手段】壁面及び/又は底面の少なくとも一部が光透過性樹脂で形成され、かつ、少なくとも一方の表面に光触媒を有する仕切り板12を底面に配置することにより形成された流路14を備える曝気槽10に有機排水を被処理水として導入する。導入口15を通じて導入された被処理水を流路14に流通させ、流路14において散気管13を用いて被処理水に曝気処理を行い、かつ、被処理水を仕切り板12の表面の光触媒と接触させることにより光触媒処理を行う。 (もっと読む)


【課題】消費するエネルギー量が小さい水処理技術を提供する
【解決手段】被処理水を貯める液体処理水槽1と、液体処理水槽1内の該被処理水中に、ナノバブルまたはマイクロナノバブルを発生させる、ナノバブル発生機47、マイクロバブル発生機78、および水中ポンプ型マイクロナノバブル発生機52と、液体処理水槽1に流入する該被処理水の水質を測定するための流体処理前測定槽72と、液体処理水槽1から流出する該被処理水の水質を測定するための流体処理後測定槽57とを備えており、流体処理前測定槽72が測定した水質と、流体処理後測定槽57が測定した水質とに基づいて、ナノバブル発生機47、マイクロバブル発生機78、および水中ポンプ型マイクロナノバブル発生機52のそれぞれを稼働または停止させるようになっている水処理装置100を用いる。 (もっと読む)


【課題】従来のようには汚泥が発生しない水処理システムを提供しようとするもの。
【解決手段】塩素ガスを混合して次亜塩素酸を生成せしめる気液混合機構6と、有隔膜電解槽5とを具備し、前記気液混合機構6で生成した次亜塩素酸を含有する水を被処理水に及ぼしてそのCODを低減すると共に、前記被処理水の少なくとも一部を有隔膜電解槽5に供給しその陽極側でガス化した塩素ガスを気液混合機構6に供給するようにした。生物処理ではなく次亜塩素酸によって化学的にCODを低減することができる。気液混合機構(塩素ガスの次亜塩素酸への変換)⇒被処理水のCODの低減(次亜塩素酸の酸化作用の発現)⇒有隔膜電解槽(塩素ガスのガス化の促進)⇒気液混合機構(塩素ガスの次亜塩素酸への変換)のように気液混合機構を介して塩素を循環し有効利用することができる。 (もっと読む)


【課題】第1に、OHラジカルが効率的に生成され、もって揮発性有機化合物を確実に酸化,分解することができ、第2に、しかもこれが、ランニングコスト,後処理コスト,制御の容易性,処理の安定性,イニシャルコスト、等にも優れて実現される、揮発性有機化合物含有水の処理装置、および処理方法を提案する。
【解決手段】この処理装置2および処理方法は、被処理水3に含有された揮発性有機化合物1を、フェントン法に基づき酸化,分解する。そして処理装置2は、処理槽4と、処理槽4に付設された被処理水供給手段5,過酸化水素添加手段6,鉄イオン添加手段7,pH調整手段8とを、備えている。過酸化水素添加手段6は、処理槽4の被処理水3に過酸化水素を添加し、鉄イオン添加手段7は、処理槽4の被処理水3に2価の鉄イオンを添加し、pH調整手段8は、処理槽4の被処理水3を所定の弱酸性に維持する。 (もっと読む)


【課題】オゾン処理と生物処理を用いて有機物を除去する水処理方式において、オゾン処理の効率を向上することにより、高い有機物除去性能を有する経済性の高い水処理システムを提供する。
【解決手段】マイクロバブル生成装置1Aで被処理水中に生成したオゾンマイクロバブルを、オゾン反応槽11Aに注入する。この被処理水を、生物反応槽21Aの生物活性炭層23に形成した生物膜で処理し、有機物をさらに分解、吸着処理する。オゾンマイクロバブルは酸化力と反応性が高いため、効率良く有機物を分解するとともに、生物難分解性有機物を生物易分解性有機物に変性させることができる。また、反応性が高いため処理後の溶存オゾン濃度が低減され、生物・活性炭処理槽21Aの微生物の健全性を維持できる。これによって、被処理水中の有機物除去効率と維持管理性が向上し、水処理の経済性が向上する。 (もっと読む)


【課題】廃液中の有機物を効率的に分解処理可能な有機物分解装置を提供する。
【解決手段】有機物分解装置1は、第2移送管5内を移送される有機廃液に酸化剤を供給する酸化剤供給部としての供給管11と、第2移送管5内の有機廃液に旋回流を発生させる旋回流発生部としての羽根部材12と、羽根部材12よりも下流側に配置されて第2移送管5内の流路を複数の分割流路に区画した区画部14とを備える。旋回流として区画部14に到達した有機廃液中に含まれる酸化剤は、区画部14を形成する板状部材の表面に衝突することによって微細化される。そして、この微細化された酸化剤が流路内を移送される有機廃液中の有機物に接触することで有機物が分解される。 (もっと読む)


【課題】より簡単なクラゲ処理工程で、低コストかつCOD処理効率を向上させたクラゲ処理装置及びクラゲ処理方法を提供する。
【解決手段】クラゲ処理装置10A−1は、海水11中のクラゲを保管し、クラゲを破砕するクラゲ保管槽12と、分解酵素供給部14より供給される分解酵素13により分解を行うクラゲ分解槽15と、酸化性物質供給部16より供給される酸化性物質17により前記分解されたクラゲ分解液18中のCOD成分を酸化処理するCOD処理槽19とを有するクラゲ処理装置であって、該COD処理槽19内に供給される前記クラゲ分解液18を加温する加熱部20及びクラゲ分解液18を冷却する冷却部22を有してなるものである。 (もっと読む)


【課題】オゾン供給量を変えず、しかもブロワーやコンプレッサー等の機器を別途用いることなく供給ガス総流量を増加させて、槽内に対してより均一にオゾンを供給する。
【解決手段】空気を原料として高濃度酸素ガスを生成する酸素濃縮装置2からの高濃度酸素ガスを原料とし、オゾン発生装置6によって生成されたオゾンが供給管8に送られる。高濃度酸素ガス生成時に生じた窒素ガス濃度が高い排ガスは、酸素濃縮装置2から供給管8へと送られ、供給管8内でオゾン含有ガスを希釈する。希釈オゾンガスが供給管8を通じて生物処理槽1内に供給される。 (もっと読む)


【課題】活性炭の破過を抑制し得る水処理技術を提供する。
【解決手段】処理水に活性炭を接触させる活性炭吸着手段を備えている水処理装置において、該処理水中にナノバブルまたはマイクロナノバブルを発生させるバブル発生手段をさらに備える。 (もっと読む)


【課題】効果的に槽内の全液体を充分攪拌することができる水処理装置を提供する。
【解決手段】槽15内に導入された液体中に含まれる混入物を除去するための水処理装置であって、槽15は、液体を流動させるための水流を発生させる水流発生領域49と、液体中に含まれる混入物を除去する除去領域50とを有し、水流発生領域49と除去領域50とは、水流発生領域49と除去領域50との間で少なくとも液体が移動可能に接続されており、水流発生領域49内には、ナノバブル発生部51またはマイクロナノバブル発生部52によって作製されるナノバブル含有水またはマイクロナノバブル含有水を吐出する吐出口と、気体を吐出する散気管19とが設けられており、除去領域50内には、細孔を有するとともに表面に微生物が固定化された、ポリビニルアルコールからなる担体16が設けられている。 (もっと読む)


【課題】FT法において液化炭化水素の副産物として生じる副生成水を浄化して各種用途に利用可能な水とする際の設備コスト、ランニングコストの低減を図る。
【解決手段】合成ガスを用いた炭化水素の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1)を行うことにより1次処理水を得る。次いで、この1次処理水に対してクロスフロー方式で半透膜分離処理(2)を行い浄化水を得る。この浄化水は、河川や海等に排水するものとしてもよいが、好ましくは、工業用水、灌漑用水、飲用水等として使用される。また、半透膜分離処理(2)で発生する濃縮水に対して、生物処理を行うとともに固液分離を行うことにより濃縮水を浄化する。また、この生物処理された水は、例えば、半透膜分離処理(2)に返送されて、再び処理される。 (もっと読む)


【課題】FT法において液化炭化水素の副産物として生じる副生成水を浄化して各種用途に利用可能な水とする際の設備コスト、ランニングコストの低減を図る。
【解決手段】合成ガスを用いた炭化水素の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1)を行うことにより1次処理水を得る。次いで、この1次処理水に対してクロスフロー方式で半透膜分離処理(2)を行い、浄化水を得る。この浄化水は、河川や海等に排水するものとしてもよいが、好ましくは、工業用水、灌漑用水、飲用水等として使用される。また、半透膜分離処理(2)で発生する濃縮水の一部を副生成水に返送して再び湿式酸化処理を行なう。濃縮水の残りに対して、生物処理を行うとともに固液分離を行うことにより濃縮水を浄化する。また、この生物処理された水は、例えば、半透膜分離処理(2)に返送されて、再び処理される。 (もっと読む)


【課題】最終沈澱池内で重力沈澱せず流出した微細固形物が、再生水製造用ろ過膜面への負荷を増加させる問題を、簡易かつ低コストな方法で防止し、下水から安定して再生水を得ることができる再生水製造方法を提供すること
【解決手段】本発明は、下水2次処理水を膜ろ過して再生水を得る再生水製造方法であって、生物処理槽2の後段に設けられた最終沈澱池3から流出する下水2次処理水を、無攪拌の沈殿槽4に導いて、前記被処理水中に含まれる微細固形物を重力沈降させて被処理水中から除去する工程を有することを特徴とする再生水製造方法によって上記課題を解決する。 (もっと読む)


【課題】浮遊物質(SS)濃度の高い排水、塩を含む排水にも対応可能であり、かつ処理装置の小型化、簡素化、使い回しが可能可搬式の装置とすることにより、装置のコストダウンを図ることができる難分解性物質含有水の処理方法を提供する。
【解決手段】下記工程(A):(1)難分解性物質の濃度が5〜30,000pg−TEQ/Lの範囲内であり、(2)浮遊物質(SS:Suspended Solid)の濃度が1mg/L以上であり、かつ(3)上記難分解性物質の濃度(pg−TEQ/L)/上記浮遊物質(SS)の濃度(mg/L)の比が2以上である難分解性物質含有水から、孔径が0.001〜1.5μmの範囲内の濾過膜を用いて難分解性物質を除去する工程を含む難分解性物質含有水の処理方法。 (もっと読む)


【課題】従来のようには汚泥が発生しない水処理方法及び機構を提供しようとするもの。
【解決手段】この水処理方法は、有隔膜電流印加槽5で塩素が溶存する水に電流を流してその陽極側から塩素ガスを発生せしめ、前記塩素ガスを回収して直接的又は間接的に被処理水に及ぼし汚れ評価指標を低減させるようにした。この水処理機構は、塩素が溶存する水に電流を流してその陽極側から塩素ガスを発生せしめる有隔膜電流印加槽5を具備し、前記塩素ガスを回収して直接的又は間接的に被処理水に及ぼし汚れ評価指標を低減させるようにした。有隔膜電流印加槽の陽極側から発生する塩素ガスを大気中に開放せずに回収し被処理水に及ぼして汚れ成分の結合を化学的に切断していくことにより汚れ評価指標が低減されるので、生物処理の場合のような汚泥(微生物の死骸等)は発生しない。 (もっと読む)


【課題】無電極ランプの交換性の向上を図るとともに、効率よく無電極ランプにマイクロ波を放射させて流体改善の向上を図る。
【解決手段】無電極ランプ13とマイクロ波エネルギーを供給するマグネトロン12が一体構造となったランプハウス11と被処理水が収容される収容部17は別空間で構成する。ランプハウス11と収容部17は照射窓112に配置したスクリーン18を介して紫外線を通過可能とし、収容部17に収容した被処理水内に光触媒物質が担持された浄化処理部材19に対し紫外線が照射可能とする。これにより、取り外し可能なランプハウス11は、収容部17から取り外し可能とし、ランプハウス11に収容された無電極ランプ13の交換を容易にすることができる。このため、無電極ランプ13のメンテナンスが容易となり、ランニングコスト削減に寄与することが可能となる。 (もっと読む)


101 - 120 / 302