説明

Fターム[4D050AB07]の内容

酸化・還元による水処理 (19,692) | 酸化又は還元対象物質 (4,141) | COD,BOD,SS,TOC (302)

Fターム[4D050AB07]に分類される特許

21 - 40 / 302



【課題】本発明は着色有機物を含む汚濁排水の脱色と汚濁物質の酸化分解反応を極めて効率よく進めることができる、汚濁排水の脱色浄化方法を提供する。
【解決手段】
着色有機物を含む汚濁排水に空気を含んだ気体を吹き込み、気液混合状態で微生物の皮膜を形成させた炭素質材料を充填した反応塔に通液した後、酸化イリジウムを含む電極を陽極に用いて塩化物イオンを含む電解質水溶液を電解して得られた電解機能水を添加反応させ、さらに、その後段に酸化鉄を含む有機多孔質材料を充填した触媒反応塔に通液処理する。
(もっと読む)


【課題】 本発明は、排水中の有機および/または無機の被酸化性物質を効率よく、経済的に、なおかつ長期間安定的に処理する方法を提供する方法を提供することを目的とするものである。
【解決手段】 反応塔に、組成および/または組成比の異なる2種以上の触媒を充填して2個または3個以上の触媒層を設け、この反応塔に酸素含有ガスおよび排水を供給し、370℃以下の温度で、かつ該排水が液相を保持する圧力下にて排水を湿式酸化するに際して、気液を下向並流で流通させ、さらに、触媒に含まれる成分のうち、B成分としての、チタン酸化物、ジルコニウム酸化物およびチタン−ジルコニウム複合酸化物から選ばれる少なくとも一種の上記触媒における含有量が、排水の流れ方向に対して入口から出口に向かって多くなるようにする。 (もっと読む)


【課題】河川や海域の水質を改善したり、養殖場での魚介類の増殖を促進したりすることのできる水質浄化材を提供する。
【解決手段】本発明にかかる水質浄化材は、ピッチコークスを必須成分とする、ことを特徴とする。 (もっと読む)


【課題】 酸化効率を向上させることにより小型化を可能としつつ、長期にわたって性能を発揮することが可能な水質分析用の酸化装置を提供する。
【解決手段】 有機物、窒素化合物またはリン化合物を有する試料液中のTOC、全窒素、および全リンの含有量を分析するための水質分析用酸化装置であり、前記試料液が一方向に流動する反応容器内に、185nm及び254nmの波長の紫外線を発する紫外線ランプと、光触媒機能を有する繊維からなる不織布の成形体とを有し、前記試料水が前記光源からの光の照射下、前記成形体を通過するように構成されており、前記有機物、窒素化合物またはリン化合物が酸化される機能を有する水質分析用酸化装置。 (もっと読む)


【課題】 原水中のTOC、特に尿素を高度に分解することができる水処理方法を提供する。
【解決手段】 1は図示しない原水貯槽から供給される原水Wの前処理システムであり、この前処理システム1で処理された原水Wは、生物処理手段3に供給される。そして、この生物処理手段3で処理された処理水W1は一次純水装置に供給される。生物処理手段3の前段には図示しないpHセンサと第一の供給機構5とが設けられていて、第一の供給機構5からアンモニア性の窒素源(NH−N)及び硫酸が添加可能となっている。また、第一の供給機構5に併行して、酸化剤及び/又は殺菌剤を添加する第二の供給機構6が設けられている。このような構成により、生物処理手段3において硝化菌を優占種化する。 (もっと読む)


【課題】 フェノール類を含む高COD排水に対し、従来の生物学的処理法に比べてオペレーション技術の簡易化、設備の小型化、エネルギーコストの削減が可能な排水処理方法を提案する。
【解決方法】
該排水の電導度が2mS/cm以上の場合、鉄を電極にした電気分解を行う。pHを6以上9未満に調整し微粒子を発生させ、これを沈殿除去後水酸化第2鉄コロイド粒子を加えて沈殿除去する。孔拡散・ろ過法で固液分離する。
電導度が2mS/cm未満の場合、酸化剤を加えた後に、塩化第1鉄水溶液または塩化第2鉄水溶液を加えるか、あるいは塩化第1鉄と塩化第2鉄を混合した水溶液を加えるか、あるいは平均粒径4nm以上30nm未満の水酸化第2鉄コロイドを加える。pHを5以上9未満に調整してした沈殿物を除去し水酸化第2鉄コロイドの添加および高分子膜を用いての沈殿物の固液分離する。 (もっと読む)


【課題】生分解可能な有機物を完全に分解すること及び難分解性物質の分解を化学的な酸化と生物的な酸化分解の適切な組み合わせで、実現できる水処理装置を提供すること。
【解決手段】紫外線酸化搭5で酸化処理された第二処理水の一部または大部分を第四給水管51、バルブ54及び第五給水管52(第一循環路)により濾過槽3へ戻す。この循環により、紫外線酸化搭5で部分的な酸化を受けた有機物が濾過槽3に生息する微生物に分解される効果がある。また、活性炭搭6の最終処理水の一部または大部分を第七給水管56、バルブ59及び第八給水管57により、第一水槽4に戻す(第二循環路)。この場合には、残留する難分解性物質が比較的低濃度の場合に有効である。 (もっと読む)


【課題】ガスを流体に移送するシステムを提供する。
【解決手段】本発明による方法及び装置は、廃水処理に使用されるガス富化流体を生成することに関する。実施例において、処理すべき廃水供給部の一部の廃水を流体供給部(80)によって引いて、廃水を、ガス供給部(70)からのガスで加圧された容器(60)に噴霧器の仕方で送出する。それにより、ガス富化廃水を形成する。次いで、ガス富化廃水を、ガス富化流体供給部(90)によって、処理すべき廃水供給源へ送出する。 (もっと読む)


【課題】金属イオンと配位結合を形成する有機化合物を含む水を処理対象とし、得られる処理水の水質が向上する水処理装置を提供する。
【解決手段】金属イオンと配位結合を形成する有機化合物を含む水を処理対象とし、処理対象の水のフェントン反応を行うための少なくとも1つのフェントン反応槽と、フェントン反応による反応熱で昇温したフェントン反応水の少なくとも一部をフェントン反応槽の前段側または前段側のフェントン反応槽に返送する返送手段と、を有する水処理装置である。 (もっと読む)


【課題】排水その他の汚染水の浄化処理の化学的な全体設計を行うことができる水質浄化方法を提供しようとするもの。
【解決手段】汚染水1の汚れ指標を設定汚れ指標2で除して処理系3内のフィードバック倍率を算出し、汚染水1とフィードバック水4の混合時の汚れ指標をそれぞれの水量を勘案して算出し、前記混合時の汚れ指標の算出値から設定汚れ指標2を減じて必要低減量を算出することにより汚染水を浄化するようにした。この水質浄化方法によると、汚染水の汚れ指標(例えば1000ppm)を設定汚れ指標(例えば5ppm)で除して処理系内のフィードバック倍率(例えば200倍)を算出し、汚染水とフィードバック水の混合時の汚れ指標(例えば10ppm)をそれぞれの水量を勘案して算出するようにしたので、生物処理の活性汚泥のような微生物の機嫌任せではない。 (もっと読む)


【課題】マイクロバブル圧壊技術及び無機系凝集剤を使用することにより、効果的に排水中の有機物量を低減させる排水処理方法を提供する。
【解決手段】有機物を含む排水中に気体が内在した直径が10〜50μmのマイクロバブルを発生させる工程と、物理的刺激を与えて前記マイクロバブルを圧壊させる工程と、前記排水に前記圧壊工程の前及び/又は最中に、無機系凝集剤を添加する工程とを具備する無機系凝集剤を利用した排水処理方法であって、前記無機系凝集剤は、前記排水に対し、0.1〜3%となるように添加され、前記圧壊工程にて圧壊された前記マイクロバブルの表面において、前記排水中の溶解有機物並びに前記排水中及び前記無機系凝集剤により供給された電解質イオンが高濃度に濃縮されると共に、前記圧壊により生じたフリーラジカルの作用を受けて化学反応を起こすことにより、溶解有機物を固体として析出させる。 (もっと読む)


【課題】ポンプなどの動力源を用いずに気体を溶解させることができるガス溶解機構を提供しようとするもの。
【解決手段】槽内の液にガスを溶解させるガス溶解槽5を有し、前記ガス溶解槽5では槽内の液を引き出して循環しており、引き出した液を槽内に戻す際に前記ガスへとエジェクター作用を及ぼすようにした。このガス溶解機構によると、槽内の液にガスを溶解させるガス溶解槽5から引き出した液を槽内に戻す際に前記ガスへとエジェクター作用を及ぼすようにしたので、引き出した液を槽内に戻す際にこの液体の粘性で槽内へとガスを引き込むことができる。 (もっと読む)


【課題】排水中に最終的な残物として残存するナノレベルの有機系微小固体物質を効果的に除去する方法を提供する。
【解決手段】有機物系微小固体物質を含むCODが1000mg/L以上の排水に対して、前記排水中で、気体が内在した直径が10〜50μmのマイクロバブルを発生させる工程と、物理的刺激を与えて前記排水中の前記マイクロバブルの一部を圧壊させ、直径が50〜500nmのナノバブルを発生させる工程と、前記ナノバブルを含む前記排水を、流速0.1〜10cm/分で活性炭槽に通過させる工程と、前記活性炭槽を逆洗する工程とを具備する排水中の最終残存有機物処理方法であって、前記活性炭槽が、前記ナノバブルと、前記有機物系微小固体物質との化学反応の場となり、前記微小固体物質が処理され、前記排水中のCODが原水の1/5以下になる。 (もっと読む)


【課題】マイクロバブルを使用した排水処理において、効果的に有機物系SSを取り除くために泡沫分離を利用した前処理装置及び方法を提供する。
【解決手段】有機物系微小固体物質を含むCOD1000mg/L以上の排水において、排水を条件槽で気体が内在した直径が10〜50μmのマイクロバブルを第1マイクロバブル発生装置で発生させマイクロバブル処理をする工程S1と、泡沫形成槽で前記工程で処理された排水に対し、空気を供給させながら第2マイクロバブル発生装置でマイクロバブルを発生させ排水内に泡沫を形成させる工程S3と、泡沫分離槽で泡沫を含んだ排液を泡沫相及び液相に分離し泡沫相を掻き出す工程S5とを具備する排水前処理方法であって、泡沫形成槽で第2マイクロバブル発生装置により発生したマイクロバブルの表面に有機物系微小固体物質を付着させると共にマイクロバブルを上方に浮上させ泡沫を形成させることにより泡沫を処理する。 (もっと読む)


【課題】光触媒反応を利用して溶液中に活性酸素種を生成して堆積した微粒子を除去するための純水製造方法を提供することを目的としている。
【解決手段】光触媒1であるオキソ酸およびハロゲンが化学結合した酸化チタン(IV)を水中に設け、水中で酸素を含む気体を散気手段3によって気体を水中に混合しながら、光源2によって酸化チタン(IV)に紫外線を照射することで、反応液中に過酸化水素などの活性酸素種を生成する。液中に浮遊するか、または固体表面に付着する有機物などの微粒子と反応し、除去効果を発現する。 (もっと読む)


【課題】懸濁物質と着色有機物を含む汚濁排水の脱色浄化方法を提供する。
【解決手段】
酸化イリジウムを含む電極を陽極に用いて、塩化物イオンを含む電解質水溶液を電解して得られた電解処理水(電解機能水)を有機着色汚濁水に添加し、多段反応槽とした中間の反応槽に酸化鉄を含む多孔質材料である酸化鉄担持竹炭と接触させることで電解機能水中の酸化活性物質による汚濁物質の分解反応を促進させ、同時に過剰の残留酸化性物質を分解除去処理し、必要に応じてその後段の反応槽に空気を吹き込んで通液処理する有機着色汚濁水の脱色浄化方法。
(もっと読む)


【課題】着色汚濁水を汚泥を発生させることなく効率よく脱色浄化できる機能を持った電解機能水の製造方法と製造した機能水を着色汚濁水に添加して脱色浄化する簡便で経済的な着色汚濁水の浄化処理方法を提供する。
【解決手段】電解質を含む水溶液を電解反応槽に上向流で通液し、得られた電解水を気液分離し、脱色浄化に有効な電解機能水を排水に添加する方式の有機着色汚濁水の浄化処理方法である。陽極には酸化イリジウムまたは導電性ダイヤモンド系電極を用いることを特徴とする。
(もっと読む)


【課題】担体上に固定された光触媒の触媒性能を発揮させるとともに、太陽光が届かない場所においても浄化作用が可能な浄水システムを得る。
【解決手段】光触媒を坦持した多孔質炭化ケイ素構造材10及び多孔質炭化ケイ素構造材10の内部に配置された紫外線導光体20を有する光触媒坦持炭化ケイ素フィルタ100を備える浄化部Iと、発光ダイオード(LED)200により発生させた紫外線エネルギを浄化部Iの紫外線導光体20に導入する紫外線発光部IIと、紫外線発光部IIに太陽電池ユニットにより発生させた電力を供給する電源部IIIと、を備えることを特徴とする浄水システム。 (もっと読む)


【課題】 難分解性物質を複数種類含み大量に排出されるガス化プラント排水に対して、安価かつ効率的で安全に処理可能な処理方法及び処理装置を提供する。
【解決手段】 化石燃料を部分酸化して得られるガスを湿式洗浄した際に排出される排水の処理方法であって、排水を酸性側に調整して曝気することによって排水に含まれる遊離シアンを除去する遊離シアン除去工程2と、遊離シアン除去工程2で処理された排水を生物処理する生物処理工程3と、生物処理工程3で処理された排水に含まれるCOD成分を分解する分解処理工程4とからなる。分解処理工程4は、促進酸化処理する手段によって構成されていることが好ましく、排水にカルシウム系アルカリ剤を添加して硫酸カルシウムを晶析する工程を含んでもよい。 (もっと読む)


【課題】水耕栽培システムの循環水を簡単な設備で効率よく浄化する。
【解決手段】循環水を循環させる循環経路(11)を、循環水中でストリーマ放電を行って過酸化水素を発生させる放電部(62)及び放電部(62)に直流電圧を印加する直流電源(70)を有する除菌経路(12)と、この除菌経路(12)を経由させない通常経路(13)とのいずれかに切換可能に構成し、循環水が汚染されたときに、除菌経路(12)に循環水を通過させ、循環水中で直流電圧を印加してストリーマ放電を行って過酸化水素を発生させて循環水を浄化し、通常時には、除菌経路(12)を経由させないで循環水を循環させる。 (もっと読む)


21 - 40 / 302