説明

Fターム[4G001BE22]の内容

セラミック製品 (17,109) | 構造 (1,602) | 結晶粒の形、大きさ (270) | 結晶粒径 (198)

Fターム[4G001BE22]に分類される特許

81 - 100 / 198


【課題】 炭化硼素の持つ高い比剛性を利用した高比剛性複合材料でありながら研削性が優れた複合材料の製造方法を提供すること。
【解決手段】 炭化硼素・炭化珪素・炭素源を主成分とする原料を成形して充填率が60−80%の成形体を製造する成形工程と、該成形体に熔融シリコンを含浸させることにより炭素を炭化珪素に転換させる反応焼結工程を備えたことを特徴とする、炭化硼素・炭化珪素・シリコンを主成分とする複合材料の製造方法。 (もっと読む)


【課題】 高い熱伝導率を有し、しかも切削加工性の良い窒化アルミニウム焼結体を提供する。
【解決手段】 硬度が21000Pa、平均粒径が4〜9μmの窒化アルミニウム結晶粒を有する窒化アルミニウム焼結体であり、上記焼結体は、窒化アルミニウム結晶粒の三重点に、平均粒径が0.5〜2μmであり、好ましくは、Yを単一化合物として有する焼結助剤含有相を、焼結体中におけるYの割合が 1.4〜3.5質量%となる割合で有する。 (もっと読む)


【課題】 超硬合金の高硬度と高強度(抗折力)を両立可能な炭化タングステン粉末およびその製造方法を提供する。
【解決手段】 本発明の炭化タングステン粉末は、レーザー回折・散乱法にて粒度測定した際に得られる粒度分布の累積パーセント径、D10%、D50%、D90%のそれぞれの値をX、Y、Zμmとしたとき、0.35≦X/Y、Z/Y≦2.85、0.20≦Y≦1.20である。
本発明の炭化タングステン粉末は、金属タングステン粉末またはタングステン酸化物粉末のいずれかと炭素源粉末との混合物を原料として、加熱処理にて得られた炭化タングステン粉末を、気流式粉砕機にて、粉砕ガス圧力0.4〜0.7MPaで粉砕し、その後、遠心分級機にて、分級風量4.0〜6.0m/分、分級機周速2200〜3500m/分で分級して得られる。 (もっと読む)


【課題】塗着効率を損なうことなく、火花放電や絶縁破壊を抑制することが可能な静電塗装用回転霧化頭及びその製造方法を提供すること。
【解決手段】以下の構成を備えた静電塗装用回転霧化頭及びその製造方法。(イ)少なくとも放出端は、焼結温度T1、電気比抵抗ρ1の絶縁性セラミックスと、焼結温度T2(T1<T2)、電気比抵抗ρ2(ρ1>ρ2)の導電性セラミックスとの複合体からなる。(ロ)導電性セラミックス含有量は、9〜11wt%である。(ハ)絶縁性セラミックスの平均粒径(D1)は、0.5〜10μmである。(ニ)導電性セラミックス/絶縁性セラミックスの粒径比(D2/D1)は、1/800〜1/5である。(ホ)静電塗装用回転霧化頭は、抵抗値が106〜1012Ωである。(ヘ)絶縁性セラミックス粒子の周囲に、導電性セラミックス粒子が0.1〜2.0μmの間隔で不連続に分散し、導電パスを形成している。 (もっと読む)


【課題】0.1μm以下の寸法を持つ微細粒子のcBN焼結体を用いた切削工具を提供する。
【解決手段】被切削物を切削するための切削工具であって、六方晶窒化ホウ素を原料として、該六方晶窒化ホウ素を加熱しながら加圧することで立方晶窒化ホウ素の焼結体1に転換する。焼結体1,1aを、被切削物を切削する切刃部とした。加熱および加圧は、前記焼結体1を構成する粒子の寸法を0.1μm以下にする温度および圧力で行われる。 (もっと読む)


【課題】硬度とヤング率の低下となるCoを添加せず、WCにSiC及びMo2Cを同時添加により、WC焼結体の焼結性と靭性を向上させ、更にMo2C、Cr3C2、ZrCを添加により、高硬度、高ヤング率、高破壊靭性値等を向上させたWC-SiC-Mo2C系焼結体及びその製法の提供。
【解決手段】1〜30mol%のSiC粉、0.001〜20mol%のMo2C粉、残部がWC及び不可避的不純物からなる混合粉の焼結によるWC-SiC-Mo2C系焼結体及び1〜30mol%のSiC粉、0.001〜20mol%のMo2C粉、及び0.001〜1mol%のCr3C2粉、0.001〜1.0mol%のVC粉、0.001〜5mol%のZrC粉又は0.001〜5mol%のNbC粉の内一種以上を含有し、残部がWC及び不可避的不純物からなる混合粉を、1550〜1750°Cで焼結する事を特徴とするWC-SiC-Mo2C系焼結体の製法。 (もっと読む)


【課題】炭化珪素焼結体本来の優れた特性を保持しながら炭化珪素単相の焼結体よりも良好な加工性を示し、優れたセラミックス構造材料となりうる炭化珪素/窒化硼素複合材料焼結体、および炭化珪素/窒化硼素複合材料焼結体の新たな製造方法を提供する。
【解決手段】上記焼結体は、炭化珪素55〜92質量%、六方晶窒化硼素5〜35質量%ならびに焼結助剤等を3〜25質量%の割合で含有し、酸素不純物含有量が0.2質量%以下であり、曲げ強度が400MPa以上である。上記製造方法は、炭化珪素粉末および六方晶窒化硼素粉末を含む混合粉末を焼成する前に真空または不活性雰囲気中1450〜1650℃の温度で熱処理する工程を備える。 (もっと読む)


【課題】耐摩耗性、耐チッピング性を改善した窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法を提供する。
【解決手段】窒化珪素質焼結体は、窒化珪素結晶粒子を主体とする結晶相と、前記窒化珪素結晶の粒界にある非結晶の粒界相とを具備する。粒界相は、ランタン、アルミニウム、マグネシウム、珪素及び酸素を含む。前記焼結体は、ランタンを酸化物換算量で0.1質量%以上、アルミニウムを酸化物換算量で0.05〜0.6質量%、マグネシウムを酸化物換算量で0.3質量%以上、酸素を酸素量が2.5質量%以下含有する。ランタンの酸化物換算量、アルミニウムの酸化物換算量およびマグネシウムの酸化物換算量の合計が3.5質量%以下である。 (もっと読む)


【課題】窒化アルミニウムからなる物体の体積比抵抗を低減する方法及び静電チャックを提供する。
【解決手段】窒化アルミニウムからなる物体の体積比抵抗を、アルゴンからなる雰囲気のような、窒素が不足している雰囲気中で少なくとも約1000℃の浸漬温度にその物体を曝すことにより低減される。物体は、多結晶質体のような緻密化された物である。静電チャックはチャック体内に電極12を有する。電極12の第1の面14における、チャック体の第1の部分20は約23℃で約1×1013ohm・cmより小さい体積比抵抗を有する。電極12の第2の面16における、物体の第2の部分22は、第1の部分20と1桁違う大きさの範囲内の体積比抵抗を有する。 (もっと読む)


【課題】多孔質セラミックス膜を分離膜として用い、それによるろ過を長時間運転しても目詰まりを生ぜず、物理的洗浄または薬品洗浄とは異なる洗浄性を発揮し得る多孔質セラミックス膜を提供する。
【解決手段】珪素化タングステンまたは珪素化モリブデンよりなる多孔質セラミックス膜。多孔質セラミックス膜は、好ましくは中空糸膜状に形成される。多孔質セラミックス膜は、気体または液体の分離膜としてろ過に用いられ、目詰まりを生じたらそこに通電処理を施し、目詰まり物質を除去してろ過膜の再生を図ることができる。 (もっと読む)


【課題】 高強度高靱性化を図ることができるとともに、放熱性を向上することができる窒化珪素質焼結体およびその製法ならびに回路基板を提供する。
【解決手段】 β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子1と粒界相3とからなる窒化珪素質焼結体であって、結晶粒子1内に、該結晶粒子1の他の部分よりもAl存在量が多いAl多領域5を有するとともに、Al多領域の平均径が2μm以上であり、かつAlを全量中0.053〜0.422質量%含有すること、望ましくは0.159〜0.238質量%含有することを特徴とする。これにより、焼結体の強度と靱性を向上できるとともに、焼結体の熱伝導率を高くすることができ、放熱性を向上できる。 (もっと読む)


【課題】 高い耐欠損性と耐摩耗性を有する切削工具を提供する。
【解決手段】 希土類金属(RE)をRE換算量で0.1〜3質量%、アルミニウム(Al)をAl換算量で0〜0.6質量%、マグネシウム(Mg)をMgO換算量で0〜1質量%、酸素を0〜2.5質量%の割合で含有する窒化珪素質焼結体からなる基体の表面に、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)の被覆層が被着形成されている切削工具である。 (もっと読む)


【課題】高気孔率でありながらも高強度であり、熱伝導率が高く耐熱衝撃性に優れ、比較的低温で焼結させることで製造可能な炭化珪素質多孔体を提供する。
【解決手段】金属珪化物を1〜30質量%含有し、気孔率が38〜80%の炭化珪素質多孔体である。 (もっと読む)


【課題】フィルタとして用いたときに捕集された粒子状物質(PM)を燃焼除去する際に、昇温し過ぎることを防止することができる炭化珪素質多孔体を提供する。
【解決手段】骨材としての複数の炭化珪素(SiC)粒子と、炭化珪素粒子同士を結合させる結合材とを有し、結合材の含有率(100×結合材/(炭化珪素粒子+結合材))が5〜70体積%であり、開気孔率が30〜70%であり、結合材が、Tiの珪化物、Zrの珪化物、Moの珪化物及びWの珪化物からなる群から選択される少なくとも一種を、結合材全体の60体積%以上含有する炭化珪素質多孔体。 (もっと読む)


【課題】摺動特性、強度や破壊靭性などの機械的特性に優れるとともに、脆化を抑制してSiC粒子の脱落などを防止してなる、ポンプなど液体を用いる回転機器での液体軸封装置として用いられるメカニカルシール装置、並びにこのメカニカルシール装置に用いるSiC系焼結体回転リング及びその製造方法を提供する。
【解決手段】SiC系焼結体回転リング及びカーボン系シールリングを含むメカニカルシール装置において、前記SiC系焼結体回転リングは、平均結晶粒径が5μm以下、気孔率が1.0%以下であるSiC系焼結体回転リングとする。この回転リングは、酸化物還元法で作製したSiC系原料粉末中に、気相合成法(CVD法)により作製した純度が99.9%以上のSiC粉末を0〜100%の割合で混合し、造粒・成形した後で、雰囲気制御加圧焼結法によって製造する。 (もっと読む)


【課題】従来の結晶粒径が大きくて、粒径分布も広い、多結晶チタンシリコンカーバイドセラミックスが示す低い切削加工精度と大きなチッピングの発生の改善を期待できる、結晶粒径が小さくて、粒径分布も狭い、多結晶チタンシリコンカーバイドセラミックスの効率的な製造方法、及びその用途を提供する。
【解決手段】粒子径の平均値が3μm以下で、粒子径の標準偏差3μm以下の水素化チタン粉末に、ケイ素粉末、炭化チタン粉末を混合し、混合粉末を加圧焼結して、結晶粒径の平均値が6μm以下、標準偏差が3μm以下、平均値+3×標準偏差で定義した最大結晶粒径が15μm以下の組織を有することで特徴付けられる多結晶チタンシリコンカーバイドセラミックスの効率的な製造方法、及びその製品。 (もっと読む)


【課題】窒化シリコン−二酸化シリコン高寿命消耗プラズマ処理構成部品
【解決手段】プラズマエッチングチャンバの平均洗浄間隔時間及びチャンバパーツの寿命を延ばす方法が提供される。イオン衝撃及び/又はイオン化ハロゲンガスに曝される少なくとも1つの焼結窒化シリコン構成部品を使用しつつ、チャンバ内において一度に1枚ずつ半導体基板がプラズマエッチングされる。焼結窒化シリコン構成部品は、高純度の窒化シリコンと、二酸化シリコンからなる焼結助剤とからなる。焼結窒化シリコン構成部品を含むプラズマ処理チャンバが提供される。プラズマ処理時のシリコン基板の表面上における金属汚染を軽減する方法が、1つ又は2つ以上の焼結窒化シリコン構成部品を含むプラズマ処理装置によって提供される。プラズマエッチングチャンバ内においてイオン衝撃及び/又はプラズマ浸食に曝される構成部品を製造する方法は、高純度の窒化シリコンと二酸化シリコンとからなる粉末組成を成形することと、該成形構成部品を緻密化することとを含む。 (もっと読む)


【課題】熱サイクル時における亀裂の進展が抑制されるとともに、耐久性が向上されるパワーモジュール用基板を提供することにある。
【解決手段】セラミックス基板2は、形状の異なる複数種類のAlN粒子からなるセラミックス焼結体20で形成されており、前記AlN粒子は、板状AlN粒子2aと、繊維状AlN粒子2bと、球状AlN粒子2cとを有しており、前記板状AlN粒子2aは、外形寸法が5μm以上30μm以下とされており、前記繊維状AlN粒子2bは、短軸径が0.05μm以上3μm以下、且つアスペクト比が3以上20以下とされており、前記球状AlN粒子2cは、粒子径が1nm以上500nm以下とされており、これら各AlN粒子は夫々の前記セラミックス基板2に占める割合が、5体積%以上50体積%以下とされていることを特徴とする。 (もっと読む)


【課題】本発明は、cBN含有率の高い焼結体において、高硬度・高熱伝導率といったcBNの特性を十分に発揮でき、難削材の高速切削にも適用でき、長い工具寿命を達成可能な高硬度焼結体を提供することを目的とする。
【解決手段】立方晶窒化硼素を主成分とする焼結体であって、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上100ppm以下であることを特徴とする立方晶窒化硼素焼結体。 (もっと読む)


本発明は、基本的に、組成物M1−y2−x2−2x2+x:Euから成り、ここで、Mは、Sr、Ca、Ba、Mg又はそれらの混合物を含むグループから選択され、Aは、Si、Ge又はそれらの混合物を含むグループから選択され、Bは、Al、B、Ga又はそれらの混合物を含むグループから選択され、x及びyは、>0から≦1までで別々に選択されるセラミック複合材料を備える発光装置、特にLEDに関する。この材料は、一方の相がアンバー乃至赤色放射相であり、他方の相がシアン乃至緑色放射相である2相組成物であることが分かった。
(もっと読む)


81 - 100 / 198