説明

Fターム[4G065AB02]の内容

コロイド化学 (9,865) | 構成成分の種類(有機物) (2,789) | O含有化合物(アルデヒド、ケトン、キノン、含酸素複素環など) (1,258)

Fターム[4G065AB02]の下位に属するFターム

Fターム[4G065AB02]に分類される特許

41 - 60 / 138


【課題】ナノレベルのルチル型結晶の酸化チタン微粒子が分散している、透明性に優れた酸化チタン微粒子の有機溶媒分散液およびその製造方法を提供する。
【解決手段】少なくとも混合有機溶媒および有機酸を含むルチル型結晶の酸化チタン微粒子の有機溶媒分散液であって、前記混合有機溶媒が親水性有機溶媒と疎水性有機溶媒のそれぞれ少なくとも1種類以上からなる酸化チタン微粒子の有機溶媒分散液。少なくとも混合有機溶媒および有機酸を含むルチル型結晶の酸化チタン微粒子の有機溶媒分散液の製造方法であって、親水性有機溶媒と疎水性有機溶媒のそれぞれ少なくとも1種類以上からなる混合有機溶媒に、水、有機酸、チタン塩およびドープ金属の塩を添加して撹拌する工程を有する酸化チタン微粒子の有機溶媒分散液の製造方法。 (もっと読む)


【課題】基材上に配置して乾燥後、比較的低温で焼成しても導電性に優れ、不純物の少ない導電部材を得ることが可能な分散性の高い銅微粒子分散水溶液を提供する。
【解決手段】一次粒子の平均粒径1〜150nmの銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に分散されている、銅微粒子分散水溶液の製造方法であって、(i)銅イオンを分散剤の存在下で、pH調整剤によりpH9.2以上に調整したアンモニア水溶液中でアンモニアとの反応により、水溶性の銅アンミン錯体を得る工程(工程1)、(ii)前記工程1で得られた銅アンミン錯体を含む還元反応水溶液中において、電解還元反応により、少なくとも表面の一部が分散剤で覆われた銅微粒子を形成する工程(工程2)、を含み、前記還元反応の系において、銅、炭素原子、水素原子、酸素原子、及び窒素原子以外の原子を含む化合物を含まないことを特徴とする、銅微粒子分散水溶液の製造方法。 (もっと読む)


【課題】内管の先端近傍に複数の貫通孔を有しない場合に比べて、詰まりを生じることなく混合できる混合装置を提供すること、特に樹脂の有機溶剤溶液に樹脂の貧溶媒を安定して混合できる混合装置を提供すること。
【解決手段】外管と、前記外管の内側に配置された少なくとも1つの内管とを有し、前記内管の長手方向先端は前記外管の長手方向の途中に位置し、前記内管はその先端近傍に複数の貫通孔を有する、ことを特徴とする混合装置。 (もっと読む)


【課題】狭小で再現性のある粒子サイズ分布を提供し、大体積および小体積両方での使用が可能であり、そして予測可能なエマルジョン特性を提供しながら便利にスケールアップされ得る、エマルジョンベースの微粒子を形成するための方法を提供すること。
【解決手段】微粒子を調製する方法であって、該方法は、以下:(a)第1の相を調製する工程であって、該第1の相は、溶媒、活性剤およびポリマーを含む、工程;(b)溶媒を含む第2の相を調製する工程;(c)該第1の相および該第2の相を、層流条件下で充填層装置に通して通過させる工程であって、ここで該方法は、微粒子の形成をもたらす、工程;ならびに(d)該活性剤を含む該微粒子を収集する工程、を包含する、方法。 (もっと読む)


【課題】溶解条件によらず水溶性高分子が本来有する凝集効果を発揮する油中水型高分子エマルジョンの製造方法を提供する。
【解決手段】ビニル系水溶性単量体を含む水相と水に非混和性の炭化水素系溶媒を乳化した後、重合し油中水型高分子エマルジョンを製造する際、特定の構造単位を有し、前記水に非混和性の炭化水素系溶媒と同種の炭化水素系溶媒中で重合した油溶性高分子を乳化剤として使用することを特徴とする溶解性に優れた油中水型高分子エマルジョンにより課題を解決できる。前記油溶性高分子はメトキシ又はフェノキシポリエチレングリコール(オキシエチレン鎖重合度n=3〜23)(メタ)アクリレート5〜30mol%、炭素数4〜18のアルキル基を持つアルキル(メタ)アクリレート50〜95mol%、ジアルキルアミノアルキル(メタ)アクリレート0〜15mol%、(メタ)アクリル酸0〜15mol%の共重合物であることが好ましい。
(もっと読む)


【課題】安定性が良好で、油性成分、特に油性成分本来の特性を損なうことの無いエマルジョン組成物の提供。
【解決手段】次の成分(A)と成分(B)と水とを含有することを特徴とするエマルジョン組成物。成分(A):疎水基と親水基とを分子内に2個以上づつ有する多鎖多親水基型化合物の1種以上成分(B):油性成分の1種以上 (もっと読む)


【課題】高濃度でも分散性、安定性に優れた樹脂で被覆した金属酸化物粒子分散ゾルの製造方法を提供する。
【解決手段】予め100〜800℃で加熱処理した平均粒子径が5nm〜10μmの範囲にある金属酸化物粒子の有機溶媒分散液に、アクリル系樹脂および/またはメタクリル系樹脂からなる樹脂被覆材を添加し、ついで、メカノケミカル処理する樹脂被覆金属酸化物粒子分散ゾルの製造方法。マトリックス形成成分とかかる方法で得られた樹脂被覆金属酸化物粒子分散ゾルと有機溶媒とを含んでなる透明被膜形成用塗布液。 (もっと読む)


【課題】粒径が100nm以下の粒子が微分散したナノ粒子分散液を容易に製造することができるナノ粒子分散液の製造方法を提供する。
【解決手段】凝集したナノ粒子を含有する粒子分散液を分散装置に送液することによりナノ粒子を連続的に分散処理する工程を有するナノ粒子分散液の製造方法であって、前記分散装置における粒子分散液が通過する流路の最も狭い部分の幅が0.5mm未満であり、粒子分散液が通過する流路内の圧力が1MPa以上であるナノ粒子分散液の製造方法。 (もっと読む)


【課題】ナノ粒子の凝集粉体を、平均粒子径が100nm以下の、特に平均粒子径が50nm以下のナノ粒子に短時間で湿式粉砕するナノ粒子分散体の製造方法の提供。
【解決手段】本願発明に係るナノ粒子分散体の製造方法は、ビーズを利用する湿式粉砕機を用いてナノ粒子の凝集粉体からナノ粒子分散体を製造する方法において、ビーズの平均粒子径が異なるn個{ここで、nは2以上の整数である。}の湿式粉砕工程を含み、[k−1]番目{ここで、2≦k≦nである。}の工程で用いるビーズの平均粒子径が[k]番目の工程で用いるビーズの平均粒子径よりも大きいことを特徴とする。 (もっと読む)


【課題】小さな平均粒径で分散が可能で、分散性、分散安定性、高濃度分散性等が良好であり、低温での加熱によっても導電性を発現する銀類微粒子分散体、及び、該銀類微粒子分散体を分散媒置換してなる銀類微粒子分散液を提供すること。
【解決手段】銀類の気体を低蒸気圧液体に接触させることによって、銀類の微粒子が該低蒸気圧液体に体積分布メジアン径(D50)100nm以下で分散された分散体を製造する方法であって、該低蒸気圧液体中にポリオキシエチレンソルビット脂肪酸エステルを溶解させておくことを特徴とする銀類微粒子分散体の製造方法、該製造方法で製造された銀類微粒子分散体、及びその銀類微粒子分散体に対して溶媒置換を施した銀類微粒子分散液。 (もっと読む)


【課題】無機ナノ粒子を無機ナノ粒子分散液中に分散させている第1の分散媒を、第2の分散媒に置換する溶媒置換を、無機ナノ粒子が凝集したり分散液がゲル化したりすることなく、最終的に第2の分散媒のみに簡便かつ効率よく行うことができる無機ナノ粒子分散液の製造方法、及び該製造方法により製造された無機ナノ粒子分散液、並びに複合組成物の提供。
【解決手段】無機ナノ粒子を無機ナノ粒子分散液中に分散させている第1の分散媒を、第2の分散媒に置換する際に、該第2の分散媒に対して、溶解度パラメータ値(SP値)の差の絶対値が3より小さい第3の分散媒を介在させることを特徴とする無機ナノ粒子分散液の製造方法である。 (もっと読む)


【解決課題】酸化チタン粒子が高分散されており、且つ、酸性又はアルカリ性に起因する光触媒活性の低下が少なく、高い光触媒活性が得られる酸化チタン分散液及びその製造方法並びに酸化チタン膜を提供すること。
【解決手段】下記一般式(1):
【化1】


で表されるアミノシラン化合物の加水分解物に、pHが5〜8となるように硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、該加水分解物の中和物を得る中和工程と、該中和物に、水又は親水性溶媒と、酸化チタン粉末とを混合し、該酸化チタン粉末を分散させて、酸化チタン分散液を得る分散工程と、を行い得られる酸化チタン分散液であり、該分散工程での該酸化チタン粉末の混合量が、該酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%となる量であり、該加水分解物の中和物が、該酸化チタン粉末100質量部に対して、0.5〜20質量部の前記一般式(1)を加水分解して得られたものであること、を特徴とする酸化チタン分散液。 (もっと読む)


【課題】 粒径のバラツキを抑制しつつ、粒径の小さな反応生成物の分散体を得る方法を提供する。
【解決手段】 少なくとも2種類の液体を接触させ、反応生成物を生成する工程を含み、前記反応生成物からなる粒子を分散媒中に分散させた分散体の製造方法であって、
それぞれ吐出させた液体の進行方向が自由空間内で交わり、該自由空間内で前記液体同士が接触後、らせん流を形成しつつ、合体して流れるように前記ノズルより前記液体を吐出させることを特徴とする分散体の製造方法。 (もっと読む)


【課題】ランニングコストが低く、処理条件に厳格性を要求されない、均質化したセラミックスラリー組成物を得る手段を提供すること。
【解決手段】バインダ溶液に対し、ホモバルブ10を具備するホモジナイザを用いて、5MPa以上、10MPa未満の低圧で、複数回の分散処理を行い、その後、分散処理を行ったバインダ溶液に、セラミックス粉末、分散剤、可塑剤を混合して、セラミックスラリー組成物を得る過程を有する、セラミックスラリー組成物の製造方法の提供による。 (もっと読む)


【課題】
高温で加熱しても多糖類からなる微粒子状ゲルが粒子状の形態を保持し、水媒体中に一様に分散した多糖類微粒子状ゲル含有水分散体を提供する。
【解決手段】
多糖類微粒子状ゲル含有水分散体の製造方法において、多糖類と水媒体からなり、該多糖類のゲル転移温度以上に加熱して多糖類を水媒体に溶解させる工程、該水媒体に溶解した多糖類を外力を加えながらゲル転移温度以下に冷却して微粒子状多糖類を得る工程、該微粒子状多糖類を含有した水分散体に電離性放射線を照射する工程を含むことを特徴とする多糖類微粒子状ゲル含有水分散体の製造方法。 (もっと読む)


【課題】 一次粒子の平均粒径が30nm以下の無機微粒子が良好に分散し、光学素子としての光散乱・透過性能を満足する程度に分散し、更にハンドリング性が良い粘度を有する無機微粒子分散溶液の製造方法を提供する。
【解決手段】 溶媒に一次粒子の平均粒径が30nm以下の無機微粒子が分散した無機微粒子分散溶液の製造方法において、溶媒の中に一次粒子の平均粒径が30nm以下の無機微粒子が凝集した状態で存在している混合溶液に、平均粒径15μm以上30μm以下のメディアを導入して攪拌して前記無機微粒子を分散させる分散処理工程を有し、前記分散処理中もしくは分散処理直後に、前記混合溶液に超音波を印加する無機微粒子分散溶液の製造方法。 (もっと読む)


【課題】保存安定性の優れるトリクロサンのナノ粒子分散液の製造方法を提供する。
【解決手段】トリクロサンのナノ粒子分散液の製造方法は、トリクロサンを溶解させたアルカリ性水溶液の第1液及び酸の第2液をそれぞれ流動させて、それらが混在状態になるように接触させる液接触ステップと、液接触ステップで混在状態になった第1液及び第2液を混合用細孔22に流通させて混合することによりトリクロサンのナノ粒子分散液を得る液混合ステップと、を備える。第1液及び/又は第2液に、総含有量がトリクロサンに対する質量比で0.1〜0.5となるようにポリビニルピロリドンを溶解含有させる。 (もっと読む)


【課題】微粒子の凝集粉体を湿式粉砕し、粉砕された微粒子同士が再度凝集することを抑制しながら粉砕する微粒子分散体の製造方法の提供。
【解決手段】本願発明に係る微粒子分散体の製造方法は、分散媒体中に平均粒子径100μm以下のビーズを用いる湿式粉砕において微粒子の凝集粉体から当該微粒子の分散体を製造する方法であって、分散剤を、当該湿式粉砕の最中、連続的又は間欠的に添加することを特徴とする方法である。 (もっと読む)


【課題】分散安定性に優れ、また、この水性顔料分散液を記録液として用いて、光沢性や鮮鋭性に優れた印刷物を得ることができる水性顔料分散液を提供する。
【解決手段】水性媒体、顔料、および分散剤を含む水性顔料分散液。該分散剤が、以下に示す樹脂(ポリマーA)を含む。
ポリマーA:アニオン性モノマー構造単位(a)と、X−Y−(RO)で表される含オキシアルキレン鎖モノマー構造単位(b)と、アミド結合を構造中に含む非イオン性親水性モノマー構造単位(c)と、非イオン性疎水性モノマー構造単位(d)とを含み、ポリマーA中のアニオン性モノマー構造単位(a)の含有量が1重量%以上、非イオン性疎水性モノマー構造単位(d)の含有量が10重量%以上50重量%以下の樹脂。 (もっと読む)


本発明は、フェノール−ホルムアルデヒドキセロゲルを基礎とする、ミクロ多孔質およびメソ多孔質の炭素キセロゲルならびにその有機先駆物質に関する。炭素キセロゲルの特有の共通のパラメーターは、77Kでの窒素収着を用いる3.5nm〜4.0nmのBJH法(Barrett-Joyner-Halenda)に従ってのメソ細孔粒度分布のピークである。製造法は、一面で僅かな反応体費用、レゾルシンの代わりのフェノールの使用を示し、他面、できるだけ簡単で安価なプロセスを示し;超臨界乾燥または凍結乾燥の代わりの溶剤交換なしの対流乾燥を示す。炭素キセロゲルおよびその有機フェノール−ホルムアルデヒドキセロゲル先駆物質は、0.20〜1.20g/cm3の密度を有し、このことは、89%までの多孔度に相当し、その上、このキセロゲルは、当該メソ細孔容積を有することができる。その上、フェノール−ホルムアルデヒドキセロゲルから現れる炭素キセロゲルは、ミクロ多孔質である。 (もっと読む)


41 - 60 / 138