説明

Fターム[4G075EE03]の内容

Fターム[4G075EE03]に分類される特許

181 - 189 / 189


本発明は新しいマイクロリアクターシステム、触媒、及び化学的プロセスを提供する。又、製造方法、新規な触媒及び反応装置も提供する。
(もっと読む)


【課題】 液滴の輸送エネルギーを低減、輸送速度の向上、液滴へのダメージ低減を可能とした液滴輸送装置を提供する。
【解決手段】
撥水処理が施された基板1の表面に油膜5を形成し、基板1の上を容易に移動可能となった水滴6について、当該水滴6の近傍のヒータ2に通電して基板1を部分的に加熱して、加熱された箇所の油膜5を温度の低い周囲に移動させることにより、油膜の流れ7により水滴6を温度の低い方向へ移動させる。 (もっと読む)


【課題】 合流路内に変形可能なまたは可動性の障害物を備えることにより、混合特性を任意の範囲内に随時制御することを可能とするマイクロリアクタを提供する。
【解決手段】 複数の流路と、該複数の流路が合流した合流路とを有し、合流路内に変形可能な障害物を備え、該障害物を変形させることによって流路内に乱流を発生させることを特徴とするマイクロリアクタに関する。本発明のマイクロリアクタは、変形可能な障害物の動作が外部から制御されるよう構成されることができる。また、変形可能な障害物として、障害物と流体との相互作用により変形が生じる障害物を使用することも好ましい。この場合、障害物の変形量は該障害物の代表長さの1%以上となるように設定されることが好ましい。 (もっと読む)


小滴を操作するために1つの装置が提供される。この装置は、単一表面電極デザインであり、すべての導電性部材が小滴を操作する第1の表面上に含まれる。操作すべき小滴を収容するために、追加的な表面を第1の表面と並行に設けることができる。エレクトロウェッティング方式を用いた技術を実行することにより、小滴を操作することができ、第1の基板の上に形成されるか、その中に埋設された電極を制御しながら順次活性化し、不活性化する。この装置は、2つの小滴を併合および混合する動作、1つの小滴を2つまたはそれ以上の小滴に分離する動作、連続液体フローから独立して制御可能な小滴を形成することにより、連続液体フローをサンプル採取する動作、および所望の混合比を得るために、小滴を反復的にバイナリ式またはデジタル式に混合する動作などの数多くの小滴動作を実行することができる。
(もっと読む)


【課題】
本発明の課題は、要求される生成物の量に応じて、流体の反応条件を変えることなく化学反応を行い、加熱のエネルギーに対する反応効率を低下させることなく生成物を供給することができる反応装置を提供することである。また、その反応装置を使って効率的な反応を行うことができる反応装置の運転方法を提供することである。
【解決手段】
本発明は、微細な複数の流路を設け、流路で行われる化学反応を流路毎に制御することにより、要求される生成物の量を使用する流路の数で調節するとともに加熱に必要なエネルギーの調節も行うことができる。すなわち、生成物の必要量が少量であっても、加熱のエネルギー量に対する反応効率を下げることなく反応を行うことができる。 (もっと読む)


流路(4)の内壁(4c)に固相となる金属触媒(5)又は金属錯体触媒(5)を担持したマイクロリアクター(1)を用いる接触反応方法であって、液相となる被反応物質を溶解した溶液(7)及び気相となる水素(9)を、流路(4)にパイプフロー状態で流し、溶液(7)と気体(9)との反応を金属触媒(5)又は金属錯体触媒(5)により促進される固相−液相−気相の3相系接触反応で行う。金属触媒(5)又は金属錯体触媒(5)は高分子に取り込まれており、被還元物質の3相系接触還元反応による水素化反応を短時間で収率よく行
うことができる。不飽和有機物の水素化反応には、パラジウム触媒を用いると反応時間が早く収率が高く、また、水素の代わりに一酸化水素を用いれば、カルボニル化反応とすることができる。 (もっと読む)


【目的】多孔膜を含むマイクロデバイスと関連して、例えば、膜マイクロ構造体内において実質的な漏洩なく触媒処理及び非触媒化学処理の如きを可能にする。
【構成】膜マイクロ構造デバイス(10)は、第1の凹部(32)を画定する第1のガラス、セラミック又はガラスセラミックからなる板(12)と、第2の凹部(34)を画定する第2のガラス、セラミック又はガラスセラミックからなる板(20)と、第1及び第2の板(12、20)の間に挟持される非金属多孔膜(30)とを含む。第1の板(12)、第2の板(20)及び多孔膜(30)が互いに組み合わせられて、多孔膜(30)が第1の凹部(32)及び第2の凹部(34)をカバーするように配置される。第1の凹部(32)は、第1の板及び多孔膜の間に第1のマイクロチャネルを画定する。第2の凹部(34)は、第2の板及び多孔膜の間で、第1のマイクロチャネルと流体連通する第2のマイクロチャネルを画定する。 (もっと読む)


材料を、該材料の全体の速度が低下する領域中に移動させて、これらの低下速度領域内に材料の堆積を生じさせることにより、ミクロ流体チャンネル網内の材料を濃縮する方法。これらの方法、装置及びシステムは、向流流動法と同様、速度差を生じさせて微小規模のチャンネル内で材料を濃縮するため、静的流体界面を使用する。 (もっと読む)


流体を受け取ると共に流体の成分を流体から分離する流体回路は、流体を受け取る分離チャンバと、分離チャンバと流体連通する空気チャンバと、分離チャンバと流体連通する戻り流路とを含む。有利な一実施形態では、当該流体回路は遠心力等の力を受け、それにより、流体の成分のほぼすべてが戻り流路に移動し、流体の残部のほぼすべてが分離チャンバに移動する。
(もっと読む)


181 - 189 / 189