説明

Fターム[4G146BA11]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 有機化合物(ハロゲン化炭化水素等) (2,653)

Fターム[4G146BA11]の下位に属するFターム

Fターム[4G146BA11]に分類される特許

261 - 280 / 451


【課題】 本発明は、効率的に被吸着物質を吸着し、しかも、流動性や充填性に優れた球状多孔性炭素粒子粉末に関するものである。
【解決手段】 平均粒子径が1〜30μmであり、BET比表面積が200m/g〜2000m/g、平均細孔径が0.5〜2nmの範囲にあり、ミクロ細孔容積が0.05〜0.4ml/gである球状多孔性炭素粒子粉末は、フェノール類、アルデヒド類及び炭素粒子粉末を、塩基性触媒を開始剤として水性媒体中で重合反応させてフェノール樹脂を結合樹脂とする炭素とフェノール樹脂からなる複合体粒子を生成させた後、該複合体粒子を固液分離し、次いで、乾燥した後、不活性雰囲気下500〜1000℃の温度範囲において加熱処理して前記フェノール樹脂を炭化させ、さらに賦活処理を行って得ることができる。 (もっと読む)


【課題】反応管の内壁あるいは基板上へのすすの堆積を抑制できるカーボンナノチューブの作製方法を提供する。
【解決手段】反応管13に炭素含有の原料ガスを導入し、反応管13内に設置した基板Sの表面にカーボンナノチューブを熱CVD法によって気相成長させるカーボンナノチューブの作製方法であって、カーボンナノチューブの気相成長時、反応炉11を冷却水で冷却して反応管13を原料ガスの熱分解温度よりも低い温度に維持する。これにより、反応管13の内壁や基板S上へのすすの付着、堆積を回避でき、成膜条件及びカーボンナノチューブの成長状態の変化を防止して、均質なカーボンナノチューブを作製することができる。 (もっと読む)


【課題】簡易な方法により十〜数十nmの厚さのグラフェン積層体を得る。
【解決手段】図1の単結晶グラファイト膜生成装置100は石英管から成るCVD反応容器1を水平に固定し、キャリアガスとしてアルゴン(Ar)を左側口1Lから導入し、右側口1Rから排出するものである。CVD反応容器1の中央よりも左側に第1の領域10を設け、右側に第2の領域20を設けた。各々独立した加熱装置15及び25により所定温度に保つ。第1の領域10にはショウノウ(camphor)を0.1〜1グラム、第2の領域20には、一辺2cmの正方形の3枚のニッケル(Ni)板21を配置させた。第1の領域を100℃まで加熱してショウノウ(camphor)を蒸気化させて、700〜900℃に保った第2の領域のニッケル(Ni)板21上にCVDによりグラファイト膜を形成した。 (もっと読む)


【課題】凝集が少なく分散性が向上したナノカーボン材料を製造することができるナノカーボン材料製造装置及びナノカーボン材料精製方法並びにナノカーボン材料を含む樹脂組成物の製造システムを提供する。
【解決手段】炭素原料11と触媒12を供給してなり、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14を非水系溶剤16に分散してなり、触媒付ナノカーボン材料14から触媒12を分離・分散する分散処理装置17と、前記分散処理した触媒12とナノカーボン材料18とを分離する分離装置19と、触媒12が分離されたナノカーボン材料18を含む分離液23を回収する回収装置とからなるものである。 (もっと読む)


【課題】凝集が少なく分散性が向上したナノカーボン材料製造装置、ナノカーボン材料精製方法、ナノカーボン材料を含む樹脂組成物の製造システム及びナノカーボン材料樹脂組成物の製造方法を提供する。
【解決手段】流動層反応器により触媒付きナノカーボン材料を製造するナノカーボン材料製造部15と、得られた触媒付きナノカーボン材料14を酸溶液16に分散してなり、触媒12を酸溶液16により溶解分離する酸処理装置17と、前記酸処理したナノカーボン材料18を水洗する水洗装置19と、水洗後に非水系溶媒20に溶媒置換する溶媒置換装置21とからなる。 (もっと読む)


【課題】電極の薄型化および低抵抗化に有利な電極材料およびその製造方法を提供する。
【解決手段】電極材料は、導電化処理(たとえば炭化処理)されたバクテリアセルロース繊維を含み、とくに、導電化処理されたバクテリアセルロース繊維単体で構成されている。導電化されたバクテリアセルロース繊維は、三次元ネットワーク構造を有しており、薄型化しても十分な強度を保持する。また、連続した構造なので、形状保持のための添加物等を必要とせず、かつ、低電気抵抗である。 (もっと読む)


【課題】カーボンナノウォール(CNW)のウォール間の間隔を変化させ、その表面積を制御させたり、その結晶性を制御して高電位における耐腐食性を向上させるカーボンナノウォール(CNW)の構造制御方法を提供するとともに、構造制御された高表面積のカーボンナノウォール(CNW)及び高結晶性のカーボンナノウォール(CNW)を提供する。
【解決手段】(1)ウォール表面積が50cm/cm−基板・μm以上であることを特徴とするカーボンナノウォール。(2)照射レーザ波長514.5nmで測定したラマンスペクトルのDバンド半値幅が85cm−1以下の結晶性を有することを特徴とするカーボンナノウォール。(3)ウォール表面積が50cm/cm−基板・μm以上であるとともに、照射レーザ波長514.5nmで測定したラマンスペクトルのDバンド半値幅が85cm−1以下の結晶性を有することを特徴とするカーボンナノウォール。 (もっと読む)


【課題】本発明によれば、基材への塗布や各種有機・無機材料との混合において有用なアルコール系有機溶媒へカーボンナノチューブを高濃度かつ均一に分散させた分散液を提供することを課題とする。
【解決手段】2〜5層カーボンナノチューブが50%以上含まれるカーボンナノチューブを用い、環状アミド構造を有するポリマーを用いることによって、アルコール系有機溶媒中にカーボンナノチューブを高濃度かつ均一に分散させることができる。 (もっと読む)


【課題】 発熱部品からの熱を速やかに移動させることができる十分な熱輸送能力を有するグラファイトフィルムを、提供することを目的としている。目的達成のための一つのアイデアとして、厚みの厚い高分子フィルムを黒鉛化する方法が挙げられるが、この方法では、表面が剥がれてボロボロになりやすいという課題がある。
【解決手段】厚みが80μm以上300μm以下である高分子フィルムを炭化昇温速度2.5〜20℃/min、黒鉛化昇温速度2℃/min以下で熱処理することを特徴とする、グラファイトフィルムの製造方法、によって、解決する。 (もっと読む)


【課題】本発明によれば、カーボンナノチューブが均一に分散された分散液を効率よく製造する方法を提供することを課題とする。
【解決手段】基体上で成長したカーボンナノチューブに分散剤および溶媒を加えた後に基体からカーボンナノチューブを剥がす処理を行い、基体を分離することによって、溶媒中にカーボンナノチューブが均一に分散された液を得ることができる。前記分散剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、ポリマーのいずれかもしくはこれらの組み合わせであることが好ましい。 (もっと読む)


【課題】メソ孔の占有率の高い活性炭を製造する。
【解決手段】構造式でCが6以上の有機酸Mg、例えばクエン酸Mgを原料とし、このクエン酸Mgを、不活性雰囲気下で300℃以上に加熱し、その後、酸洗浄する。有機酸Mgを不活性雰囲気下で300℃以上に加熱すると、有機酸MgのMgが酸化して微細な酸化マグネシウム(MgO)が形成され、CがこのMgOを被覆するようになってMgOの周りに炭素膜が形成される。その後、原料を溶解可能な例えば硫酸、塩酸などの溶液によって洗浄してMgOを溶かし出す。これにより、炭素膜だけが残り、その炭素膜の内側が細孔となる。 (もっと読む)


本発明は、ナノ構造複合材、特に生物医学用の材料および装置並びにエネルギーの変換および蓄積、イオン輸送および気液分離の分野で使用するためのナノチューブ/基材複合材に関するものである。そのような組成物の生体材料としての使用が特に興味深い。 (もっと読む)


【課題】 炭素源にショウノウを用いる化学気相成長法によってカーボンナノチューブを効率よく製造する方法を提供する。
【解決手段】 本発明のカーボンナノチューブ製造方法では、反応容器4内に配置された固体ショウノウ12を室温以上融点以下の温度(例えば80〜170℃)で徐々に気化させつつ、該気化により生じたショウノウ蒸気を触媒体14に供給して熱分解させる。触媒体14としては、触媒金属(例えば鉄およびコバルト)が支持体(ゼオライト粉末等)に担持されたものを好ましく使用できる。 (もっと読む)


【課題】 大きな重量比表面積と同時に、体積比表面積を有する炭素ナノ構造体を得ることができ、さらに、該炭素ナノ構造体の細孔径を自在に制御できることにより、EDLC用電極として有用な炭素ナノ構造体を製造することができる炭素ナノ構造体及びその製造方法を提供する。
【解決手段】 本発明に係る炭素ナノ構造体の製造方法は、ゼオライト細孔内部を鋳型として用い、該ゼオライト細孔内部に炭素を積層させて炭素構造体を形成する工程と、該ゼオライトを酸で溶解除去する工程と、該溶解除去工程により得られた炭素構造体をホットプレスすることにより、該炭素構造体の細孔径を縮小させ炭素ナノ構造体を得る工程と、からなることを特徴とする。 (もっと読む)


【課題】より高い成長率、成長効率または垂直合成等を達成できるSWCNTの製造方法を提供する。
【解決手段】真空、かつ、600〜900℃の封入空間下にある触媒に、有機脱水アルコールを接触させることを含む、単層カーボンナノチューブの製造方法。 (もっと読む)


【課題】局所的な加熱により昇温速度及び成長速度が速く、量産性及び再現性に優れたカーボンナノチューブを製造できるカーボンナノチューブの製造方法及びカーボンナノチューブの製造装置を提供する。
【課題を解決するための手段】減圧下で基板2を加熱しながら、炭素原料ガスを供給して基板2上にカーボンナノチューブを形成するカーボンナノチューブ形成工程において、基板2を赤外線により局所的に加熱する。カーボンナノチューブを形成するための基板2を収容するチャンバー1と、チャンバー1に炭素原料ガスを導入するためのガス導入手段3と、チャンバー1からガスを排気するための排気手段4と、基板2を保持する基板保持手段5と、基板2を加熱するための基板加熱手段6とを有し、基板加熱手段6が、赤外線加熱装置となるように構成した。 (もっと読む)


【課題】基板上に均一且つ垂直に配向することができるグラファイトナノファイバの生成方法及びそれを用いた電界電子放出型表示装置の製造方法を提供する。
【解決手段】ホットプレート8によって被処理基板2を加熱しつつ、ホットプレート8によりグラファイトナノファイバの原料ガスを励起することによって、被処理基板2上にグラファイトナノファイバを生成する。さらに、この方法を用いてカソード基板(被処理基板)2上にグラファイトナノファイバを生成することによって、電界電子放出型表示装置のエミッタを生成することを特徴とする。 (もっと読む)


本発明は、10μmから100nmまで及び100nm未満から3nmまでの第1及び第2のサイズ範囲内において相互接続された細孔と、グラフェン構造体とを有する多孔性伝導カーボン物質、並びにリチウムイオン電池の電極及び例えば燃料電池のメタノールの酸化のための触媒担体等、当該多孔性伝導カーボン物質の使用に関する。カーボン物質は熱処理されて、600℃から1000℃までの範囲の温度において所望の秩序度を有する非黒鉛カーボンに転化する。リチウムイオン電池及びリチウムイオン電池の電極も特許請求されている。
(もっと読む)


【課題】数百乃至数千本のカーボンナノチューブ束を同時に方向制御して水平方向に形成し、そのカーボンナノチューブ束を用いたトランジスタを提供する。
【解決手段】基板1上に形成された絶縁膜2と、絶縁膜2の上表面に沿って延びているカーボンナノチューブ束4と、絶縁膜2に形成された開口部と、開口部内に露出する基板1の一部の領域であって開口部の側壁寄りに形成された触媒層3とを有し、絶縁膜2の上表面に沿って延びているカーボンナノチューブ束4は屈曲し、その一端が触媒層3と接触し、かつそのカーボンナノチューブ束4はチャネルを構成している。 (もっと読む)


【課題】用途に制限のないカーボンナノコイルを、装置内を汚染することなく成長させるために、低融点の金属を用いずにカーボンナノコイルを成長させる方法を提供すること。
【解決手段】触媒を成膜した基板上にカーボンナノコイル成長用原料ガスを供給し、CVD法でカーボンナノコイルを成長させる際に、基板と触媒膜との間にTi−O−N結合を有する膜を設けて触媒上にカーボンナノコイルを成長させる。 (もっと読む)


261 - 280 / 451