説明

Fターム[4G146BC08]の内容

炭素・炭素化合物 (72,636) | 製造−製造工程、製造条件 (14,091) | 気相反応、気相熱分解 (1,387)

Fターム[4G146BC08]の下位に属するFターム

Fターム[4G146BC08]に分類される特許

141 - 160 / 259


【課題】 高い耐熱性、透明性および導電性を有し、密着性に優れたカーボンナノチューブコーティング膜およびその製造方法の提供を目的とする。
【解決手段】基材の上にバインダーを塗布する工程、カーボンナノチューブまたはカーボンナノチューブとバインダー(ただしカーボンナノチューブよりもバインダーが少量となるようにする)を分散させた塗液を、最初に塗布したバインダーよりもカーボンナノチューブが少量となるように塗布する工程、を順に含み、カーボンナノチューブの一部がバインダーに埋め込まれて固定されており、他の一部はバインダーから露出していることを特徴とするカーボンナノチューブコーティング膜の製造方法。 (もっと読む)


【課題】少量の触媒金属(例えば、コバルトおよびモリブデン)を含む、単一壁のカーボンナノチューブ(SWNT)およびセラミック支持体(例えば、シリカ)の複合体を提供すること
【解決手段】本発明は、少量の触媒金属(例えば、コバルトおよびモリブデン)を含む、単一壁のカーボンナノチューブ(SWNT)およびセラミック支持体(例えば、シリカ)の複合体を提供する。上記金属およびセラミック支持体を含む粒子は、単一壁のカーボンナノチューブの生成のために触媒として使用される。沈降シリカおよびヒュームドシリカの使用は、上記セラミック(例えば、シリカ)および上記単一壁のカーボンナノチューブの両方の特性を相乗的に向上し得る、ナノチューブ−セラミック複合体をもたらした。ポリマーへのこれらの複合体の添加は、それらの特性を向上し得る。 (もっと読む)


本発明は、AFMプローブのような改良されたカーボンナノチューブ(CNT)機器を製造する様々な方法及び技術を意図している。まず、CNTは、基材のような所定の位置に形成される。次にCNT及び基材は、CVD又は他の適当な方法によって保護層で覆われる。続いて、CNTのある長さがエッチング又は他の適当な方法によって露出され、形成された露出長さは、CNT機器の所定の用途に適した長さになる。 (もっと読む)


【課題】凝集が少なく、かつ凝集粒子の分布幅が狭くシャープな分布性状を示す炭素微小球を低コストで製造することのできる製造方法を提供すること。
【解決手段】炭化水素ガスを熱分解して炭素微小球を製造する方法において、炭化水素ガスを空気とともに2段階に加熱制御した外熱式分解炉17に供給して、外熱式分解炉の前段領域に供給する炭化水素ガスの濃度を10〜50vol%、炭化水素ガスの流速を0.02〜4.0m/secに設定し、外熱式分解炉の前段領域の温度を900℃以下に制御し、後段領域の温度を1000〜1400℃に制御することを特徴とする炭素微小球の製造方法。 (もっと読む)


【課題】廃材を用いて低級炭化水素を効率よく分解させることができる低級炭化水素分解用触媒の製造方法を提供する。
【解決手段】廃アルミニウム材を塩酸水溶液に溶解して得た塩化アルミニウム水溶液を触媒担体原料として使用し、廃鉄材を塩酸又は硝酸の水溶液に溶解して得た塩化鉄水溶液または硝酸鉄水溶液を触媒原料として使用する。前記塩化アルミニウム水溶液を中和し水酸化アルミニウムとして沈殿させるために水酸化ナトリウム又はアンモニアの水溶液を使用して濾過し、水酸化アルミニウムと塩化ナトリウム水溶液又は塩化アンモニウム水溶液とに分離する。分離した水酸化アルミニウムに前記塩化鉄水溶液または硝酸鉄水溶液を含浸させ、蒸発乾固させて鉄担持アルミナを得る。 (もっと読む)


【課題】黒鉛粒子および触媒金属等の不純物の混入を抑制するとともに、安定して再現性よく基板から10mm以上の高さに成長し、かつ0.08g/cm3以上の嵩密度を有するCNF集合体の安定した製造方法の提供。
【解決手段】(1)基板上にカーボンナノファイバーの膜を形成させる工程と、(2)カーボンナノファイバーに触媒を担持させる工程と、(3)炭化水素と水素を含む原料ガスと触媒の原料を同時に供給する工程とを含むことを特徴とするカーボンナノファイバー集合体の製造方法。 (もっと読む)


【課題】 炭化水素ガスの分解温度を低くし、大量で高純度の水素ガスをより低価な価格で製造できるようにし、かつ副産物として、高純度の炭素微粉末を得ることのできる炭化水素改質装置を提供することを目的とする。
【解決手段】 二酸化珪素1〜45%、コランダム10〜50%、ドロマイトペリクレス5〜30%を練和、成形、焼成した触媒を密閉装置中で400℃〜800℃に加熱し、これに炭化水素ガスを接触させ、このガスを二系列のサイクロンを交互に使用して連続的に水素ガスと炭素粉末を製造するようにした炭化水素改質装置とした。 (もっと読む)


【課題】電子伝導性に優れたリチウムリン酸遷移金属化合物とカーボンとの混合体とその製造方法と、それを用いた高率充放電性能に優れた電池を提供する。
【解決手段】リチウムリン酸遷移金属化合物にカーボンを配して導電性を付与するにあたり、アルコールを用いると、電子伝導性に優れた混合体が得られ、それを電極材料として用いることで、高率放電特性に優れた電池を提供できる。前記混合体は、第一の粒子が凝集して形成された第二の粒子と、第二の粒子の内部に存在する繊維状カーボンとを含む。 (もっと読む)


【課題】 電子デバイス及びその製造方法に関し、カーボンナノチューブの特性を生かすとともに、よりに良好な電気伝導特性をもつ配線構造を提供する。
【解決手段】 カーボンナノチューブ束3の間隙を重合フラーレン6で埋め込んだカーボンベース配線を設ける。 (もっと読む)


【課題】発電能力の向上ができ、且つ、白金族触媒の使用量を低減できる新規な構成の燃料電池用触媒電極、それを用いた膜・電極接合体、及び燃料電池を提供する。
【解決手段】 燃料電池用触媒電極8の触媒層9は、白金族触媒を担持したマリモ状カーボン10が積層されて構成され、マリモ状カーボン10のナノ炭素材料7は、ダイヤモンド微粒子6を核として球状に成長し、ナノ炭素材料7間の空隙7aは触媒層9の電極反応速度を最大とする最適な触媒担体間の空隙を有しており、且つ、ナノ炭素材料7に担持した白金族触媒5のサイズはナノサイズであり、触媒反応速度が大きい。 (もっと読む)


【課題】白金族触媒を用いない、燃料電池用触媒電極、それを用いた膜・電極接合体、及び燃料電池を提供する。
【解決手段】 触媒層3に、ダイヤモンド微粒子6と、ダイヤモンド微粒子6に一端が固定された複数のナノ炭素材料7とからなるナノ炭素複合材料4を用いる。ナノ炭素複合材料4は、水素を水素イオンと電子に分解する触媒作用、及び、酸素と水素イオンと電子とが反応して水を生じる触媒作用とを有するので、燃料電池用触媒層として用いることができる。 (もっと読む)


【課題】シリコン基板上へ触媒微粒子の粒径と分布を均一にし、配向したカーボンナノチューブを基板上に合成するカーボンナノチューブの合成方法を提供する。
【解決手段】オクタデセンなどの末端に不飽和結合を有する直鎖炭化水素でシリコン基板を表面処理して疎水性を持たせ、この上に界面活性剤で親水性表面を形成しておくと、触媒金属化合物の極性溶媒溶液の均一塗布が容易になる。このようにして得た触媒金属化合物が塗布されたシリコン基板を、乾燥、還元後、高温化で炭素源ガスを基板上に流すことで、配向したカーボンナノチューブを合成する。 (もっと読む)


【課題】安全且つ低コスト、そして簡便な装置又は設備で、高純度のCOFを製造する。
【解決手段】COと炭素とを高温接触させて得られた生成ガスと、Fを含むガスとを接触させ、COFを製造する。 (もっと読む)


【課題】本発明は、カーボンナノチューブを製造し分離するための燃焼法及び装置を提供する。
【解決手段】熱い燃焼後ガスが触媒表面と接触したときにナノチューブが形成され、触媒は、容易に触媒支持体から分離し溶解させることができる。この方法は、カーボンナノチューブの大規模製造に適している。 (もっと読む)


【課題】電子放出特性の均一性を向上させることができる炭素系微細繊維状物質の製造方法を提供すること。
【解決手段】ディスプレイ100は、電子が放出される側に設けられた背面板110と、画像が表示される側に設けられた前面板120と、背面板110と前面板120とに挟まれたスペーサ130とを有し、背面板110は、基板111と、基板111上に形成されたストライプ状の陰極母線112と、陰極母線112上に形成され電子を放出する炭素系微細繊維状物質113とを備え、前面板120は、基板121と、基板121上に形成され電子を捕捉する陽極電極122と、陽極電極122上に形成された蛍光体層123とを備え、炭素系微細繊維状物質113は、形成後に少なくとも1回の加熱工程を経るものとした。 (もっと読む)


【課題】凝集が少なく分散性が向上したナノカーボン材料製造装置及びナノカーボン材料精製方法を提供する。
【解決手段】流動層反応器により触媒付きナノカーボン材料を製造するナノカーボン材料製造部15と、得られた触媒付きナノカーボン材料を酸溶液16に分散してなり、触媒を酸溶液16により溶解分離する酸処理装置17と、前記酸処理したナノカーボン材料18を水洗する水洗装置19と、水洗したナノカーボン材料18を濾過装置23で濾過した後に、乾燥する乾燥装置24と、乾燥したナノカーボン材料を微粉砕して精製ナノカーボン材料26とする微粉砕装置25とを有する。 (もっと読む)


【解決課題】 大面積でも膜強度が強く、取り扱い性に優れ、かつ長寿命の複合膜を提供する。
【解決手段】 金属酸化物、金属化合物、金属、および、カーボンからなる群より選択される少なくとも1つを含む第1膜と、一般式(I)で表される構造単位を有するポリパラキシリレンを含む第2膜とを備えた複合膜である。 (もっと読む)


【課題】 炭素源にショウノウを用いる化学気相成長法によってカーボンナノチューブを効率よく製造する方法を提供する。
【解決手段】 本発明のカーボンナノチューブ製造方法では、反応容器4内に配置された固体ショウノウ12を室温以上融点以下の温度(例えば80〜170℃)で徐々に気化させつつ、該気化により生じたショウノウ蒸気を触媒体14に供給して熱分解させる。触媒体14としては、触媒金属(例えば鉄およびコバルト)が支持体(ゼオライト粉末等)に担持されたものを好ましく使用できる。 (もっと読む)


【課題】より高い成長率、成長効率または垂直合成等を達成できるSWCNTの製造方法を提供する。
【解決手段】真空、かつ、600〜900℃の封入空間下にある触媒に、有機脱水アルコールを接触させることを含む、単層カーボンナノチューブの製造方法。 (もっと読む)


【課題】DLC薄膜の製造方法の提供。
【解決手段】本発明はDLC薄膜の製造法に関するものであり、主にはスパッタリング方法を用いて基板表面にDLC薄膜を形成させるものである。本発明の製造方法には以下の手順を含めている:(a)反応室を提供し、反応室に基板を置く、(b)反応室の圧力を10-6 torr以下とする、(c)少なくとも一種の炭素を含むガスを反応室に導入する、及び(d)石墨ターゲット材料を使用してスパッタリング法を利用してDLC薄膜を基板に沈積させる。なお、本発明で製作したDLC薄膜には、薄片構造の特徴を持ち、基板表面に花びら模様に配列している。本発明のDLC薄膜の薄片構造の高さはミクロン単位で、厚さはナノ単位なので、本発明のDLC薄膜の薄片構造の高さと広さが高い縦幅比になっており、優れた電界放出増強因子を持つことができる。 (もっと読む)


141 - 160 / 259