説明

Fターム[4K001AA19]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Ni (435)

Fターム[4K001AA19]に分類される特許

61 - 80 / 435


【課題】リチウムイオン電池のリチウムを選択的に浸出し、不純物の混入を抑えながらリチウムを回収する方法を提供する。
【解決手段】リチウムと、マンガン、コバルト及びニッケルのいずれか1種以上の遷移金属との複合酸化物を含むリチウムイオン電池の正極活物質を焼却した際に生じる焼却灰からリチウムを回収する方法であって、前記焼却灰を水に加えて作製した処理液に無機酸を添加してpHを3〜10の範囲に調整しながら焼却灰中の水溶性のリチウムを水へ浸出させる第1工程と、前記リチウムを水へ浸出させた処理液を固液分離する第2工程と、前記固液分離で得られた浸出後液に焼却灰を加えて前記第1及び第2工程を繰返してリチウム濃度を高める第3工程と、前記リチウム濃度を高めた処理液に炭酸化剤を添加してリチウムを炭酸リチウム塩として回収する第4工程とを備えたリチウム回収方法。 (もっと読む)


【課題】廃電池熔融物の酸化度を安定させ、スラグと合金との分離を確実にする方法を提供する。
【解決手段】廃電池を焙焼して酸化処理を行う予備酸化工程ST20と、この予備酸化工程において酸化処理がされた廃電池を熔融して、スラグと、有価金属の合金と、を分離して回収する乾式工程S20と、を備える。乾式工程S20に先行して、廃電池の焙焼による酸化処理を予め行う予備酸化工程ST20を設けることにより、熔融工程ST21における最適な酸化度を安定的に得ることが可能となり、スラグと合金との分離効率を向上することができる。 (もっと読む)


【課題】Irの活性炭への吸着率を高め、Irをより効率良く回収可能な白金族含有溶液からのIrの回収方法を提供する。
【解決手段】Ir及び硫酸を含む酸性溶液に、硫酸を沈殿させる中和剤を添加することにより酸性溶液中の硫酸イオンを沈殿させて分離し、酸性溶液中の遊離酸濃度を0.03mol/L〜1.2mol/Lにして酸性溶液中のイオン強度を低下させる中和工程と、中和後のIrを含む酸性溶液中に含まれるAs、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sbの中から選択される1種以上の不純物を硫化剤の添加により取り除く硫化工程と、中和後のIrを含む酸性溶液を活性炭に通液し、Irを活性炭に吸着させる活性炭吸着工程を含む白金族含有溶液からのIrの回収方法である。 (もっと読む)


【課題】使用済み合金中から不要元素を効率よく除去してリサイクルコストの低減を図り、且つ付属材除去工程を不要にしてリサイクル効率の向上を図ることを可能にする合金のリサイクル製造方法を提供する。
【解決手段】合金からなる母材の表面上にイットリウム含有層を有する使用済み合金部材から、合金をリサイクルする方法であって、使用済み合金部材を溶融することによって揮発する少なくとも一つの揮発成分の含有割合が母材の合金よりも高い異種合金材と、使用済み合金部材とを混合した溶湯を生成する調整溶湯生成工程と、溶湯上に分離浮遊する酸化イットリウムを除去するイットリウム除去工程と、を備える。 (もっと読む)


【課題】使用済み合金中から不要元素を効率よく除去してリサイクルコストの低減を図り、且つ付属材除去工程を不要にしてリサイクル効率の向上を図ることを可能にする合金のリサイクル製造方法を提供する。
【解決手段】合金からなる母材の表面上にイットリウム含有層を有する使用済み合金部材から、合金をリサイクルする方法であって、使用済み合金部材を、イットリウム含有層を有したまま溶融する合金部材溶融工程と、使用済み合金部材を含む溶湯上に分離浮遊する酸化イットリウムを除去するイットリウム除去工程とを備える。 (もっと読む)


【課題】塗膜付きプラスチック部品を粉砕する必要がなく大きなサイズであっても処理可能で、塗装膜やめっき層を除去したプラスチック部品の回収率が高く、しかも回収したプラスチック部品中の不純物が少なく、場合によっては、めっき金属の回収も可能な塗膜付きプラスチック部品の処理方法を提供する。
【解決手段】プラスチック部品10の表面に塗装膜12が形成された塗膜付きプラスチック部品13を400℃以上1000℃以下(好ましくは700℃以下)の高温雰囲気に曝して、塗装膜12を脆化処理して除去し、めっき層11がある場合には、鉄塩浴で除去し、プラスチック部品10を回収する。この場合、プラスチック部品10は熱可塑性樹脂、塗装膜12は熱硬化性樹脂からなるのが好ましい。 (もっと読む)


【課題】水素吸蔵合金組成物の酸素濃度を低くすることができ、その結果、負極活物質構成元素からなる合金溶湯に投入して加熱溶解させる際の回収率を高めることができる、廃ニッケル水素電池から回収される新たな水素吸蔵合金組成物の製造方法を提案する。
【解決手段】廃ニッケル水素電池から負極主体回収物を選別する負極回収工程と、該負極主体回収物を加熱処理する還元・脱炭素工程とを備えた水素吸蔵合金組成物の製造方法において、還元・脱炭素工程では、還元雰囲気下、750〜1050℃まで昇温する昇温過程において、少なくとも330℃±15℃の範囲、すなわち315℃〜345℃間での昇温速度を5.0℃/min以下とし、還元・脱炭素工程終了後から降温過程の途中段階の間で還元雰囲気から不活性雰囲気に切り替え、その後の降温過程における40〜70℃の温度領域で不活性雰囲気から空気雰囲気に切り替えることを提案する。 (もっと読む)


【課題】リチウムイオン電池の正極材から有価金属を浸出し、回収する。
【解決手段】酸性溶液に正極材を浸漬させ、正極活物質及びこの正極活物質が固着した正極基板を溶解させて、正極基板を還元剤として用い、正極活物質から有価金属を浸出させる。 (もっと読む)


【課題】 高濃度であっても移送可能な程度に低い降伏応力を持ち、移送上の問題を発生させない鉱石スラリーの製造方法を提供する。
【解決手段】硫酸を用いた高温加圧酸浸出法によって、ニッケル酸化鉱石からニッケルおよびコバルトを回収する際の解砕・分級段階と、鉱石スラリー濃縮段階を含む鉱石スラリーの製造方法であって、前記スラリー濃縮段階が、使用する凝集剤溶液に、(A)凝集剤分子量:8〜20×10、(B)凝集剤希釈率:0.1〜0.5g/Lの条件を満たす凝集剤の希釈液を用い、その凝集剤の添加量が鉱石スラリー中の乾燥固形分1トン当り、凝集剤量として50〜150gに相当する量の凝集剤溶液を鉱石スラリーに添加して充分な時間接触させ、さらに、濃縮段階から次工程に移送される際のスラリー温度を、35〜45℃に保持することを特徴とする。 (もっと読む)


【課題】不純物を含有するニッケル塩から精製ニッケル溶液を調製する方法において、コバルトの除去率を向上させることを課題とする。
【解決手段】リン化合物及びコバルト成分を不純物として含むニッケル塩を無機酸で溶解することにより、リン化合物及びコバルト成分を含むニッケル溶液を形成する工程と、当該ニッケル溶液に対して酸化剤を添加することにより、リン化合物をリン酸塩として沈殿させ、これを固液分離によって除去する脱リン工程と、脱リン工程よりも後又は脱リン工程と同時に、当該ニッケル溶液に対して酸化剤を添加することによりコバルト成分を酸化した後に、中和して沈殿させ、これを固液分離によって除去する脱コバルト工程と、を含む精製ニッケル溶液の調製方法。 (もっと読む)


【課題】 正極活物質の凝集を抑制して効果的に正極材から正極活物質を分離し、正極活物質の回収率を向上させるとともに有価金属の回収ロスを防止することができる正極活物質の分離方法を提供することを目的とする。
【解決手段】 リチウムイオン電池を解体して得られる電池解体物の正極材に、アルカリ溶液を添加して正極活物質が固着した正極基板を溶解して、正極活物質を含有するスラリーを生成し、生成したスラリーに界面活性剤溶液を添加してスラリー中の正極活物質を分散させ、正極活物質とアルカリ溶液とを分離することを特徴とする。 (もっと読む)


【課題】
煩雑な工程を使用せず、かつ、比較的簡便な設備によって、リチウムイオン電池から金属を回収する有価金属回収方法を提供する。
【解決手段】
リチウムと遷移金属元素との複合酸化物を含む正極活物質を、pHが4〜7の弱酸性を示す溶液を用いて、Li/Co選択比が高く、また、高Li回収率となるようにリチウムを選択滲出させ、滲出した溶液からリチウムを回収する。リチウム滲出後の酸性溶液は、気体の発生などにより、酸性が自然消滅する溶質を用いることにより、中和工程を不要にするとともに、廃液を減少させる。 (もっと読む)


【課題】安全で少ないエネルギーにより効率よく金属化合物を還元できるようにする。
【解決手段】金属化合物をアルコールと接触させながら、密閉系空間において高温高圧下で反応させて、その反応で発生する水素ラジカルにより金属化合物を還元させて金属を得る。 (もっと読む)


【課題】 銅を含有するニッケルの酸性溶液中から銅イオンを分離するにあたり、硫化物の反応効率を向上させてその添加量を低減し、効率的に銅イオンを分離することが可能な銅イオンの分離方法、及びその銅イオンの分離方法を適用した電気ニッケルの製造方法を提供する。
【解決手段】 銅イオンを含有するニッケルの酸性溶液から、銅イオンを分離する銅イオンの分離方法であって、少なくとも、ニッケルの酸性溶液に硫化物を添加し、酸性溶液中の銅イオン濃度が平衡状態に達した後に、得られたスラリーを固液分離する第1の固液分離工程と、第1の固液分離工程を経て得られた濾液に硫化物を添加し、濾液中の銅イオン濃度が平衡状態に達した後に、得られたスラリーを固液分離する第2の固液分離工程とを有する。 (もっと読む)


【課題】 ニッケル酸化鉱石の湿式精錬プラントにおいて、原料となるニッケル酸化鉱石を処理して得られる鉱石スラリーから、クロマイトを効率的に回収する方法を提供する。
【解決手段】 ニッケル酸化鉱石からニッケル及びコバルトを回収する際に、ニッケル酸化鉱石から得られた鉱石スラリーからクロマイトを分離回収するクロマイトの回収方法であって、供給される鉱石スラリー中に含有される粒子の粒径差によって、所定の分級点に基づき鉱石スラリーを分離する粒径分離工程と、粒径分離工程において分離されたオーバーサイズの鉱石スラリーを、目標とする分級点に基づいて沈降濃縮し、クロマイトを回収する沈降分離工程とを有し、粒径分離工程において分離されるオーバーサイズの鉱石スラリー中の粗粒子含有率を30〜50%に調整する。 (もっと読む)


【課題】 水酸化リチウムの結晶水の組成ずれを防止する。
【解決手段】 炭酸リチウムを溶解した溶液に水酸化アルカリを添加し、次いで固液分離して得た水酸化リチウムを、温度20〜40℃、かつ、相対湿度60〜80%の範囲で乾燥させる。 (もっと読む)


【課題】製鉄ダストや製鉄スラッジなどのような含水粉体を造粒する場合の最適な造粒条件を見出すために、造粒物の保形性などの性状を的確に評価することができる評価方法を提供する。
【解決手段】含水粉体を主体とする原料を造粒して得られた造粒物の評価方法であって、造粒直後の複数の造粒物を容器に装入し、該造粒物に上部から荷重をかけた状態で養生し、該養生後の造粒物の状態を評価する。好ましくは、(a)造粒物の崩れ・変形状況、(b)造粒物どうしの付着状況、のうちの少なくとも1つを評価し、必要に応じてさらに、(c)容器から取り出したままの造粒物を落下試験に供した際の造粒物どうしの分離状況、を評価する。 (もっと読む)


【課題】水分を含有する製鉄スラッジや製鉄ダストを、特別な乾燥処理を施すことなく適切に造粒し、炉原料に好適な造粒物を製造する。
【解決手段】製鉄スラッジと製鉄ダストを主体とする原料の造粒物を製造する方法であって、造粒すべき原料を入れるドラム内を公転する撹拌翼と、ドラム内を撹拌翼とともに公転しつつ自転する撹拌ロータを備えた造粒物製造装置を用い、製鉄スラッジの解砕処理、製鉄スラッジと製鉄ダスト及び固化剤の混合処理を順次行い、さらに必要に応じて原料の予備的な造粒処理を行う工程(イ)と、この工程で処理された原料を転動造粒機に投入し、原料の造粒処理と造粒物表面を平滑化する整粒処理を行う工程(ロ)を有する。 (もっと読む)


【課題】フラックス事前添加金属酸化物を生成するための方法を提供する。
【解決手段】水酸化ニッケル等から選択される金属塩からフラックス事前添加金属酸化物を生成するための方法であり、少なくとも1種のスラグ形成酸化物と、水酸化ニッケル等の金属塩との混合物を提供する過程と、バインダと混合する過程と、フラックス添加剤中で混合し、スラグ形成混合物を生成する過程と、前記スラグ形成混合物をフラックス事前添加塊状物に形成する過程と、フラックス事前添加金属酸化物を生成するために前記フラックス事前添加塊状物をか焼する過程と、を有する。 (もっと読む)


【課題】鉄族元素及び希土類元素をイオン液体に溶解させ、これらを選択的に分離する鉄族元素及び希土類元素の回収方法、並びに該回収方法に用いうる鉄族元素及び希土類元素の回収装置の提供。
【解決手段】鉄族元素及び希土類元素を含有する資源を溶解させたイオン液体から、該鉄族元素を電解析出により回収する工程Aと、該鉄族元素の回収処理を経たイオン液体から該希土類元素を電解析出により回収する工程Bと、を含む鉄族元素及び希土類元素の回収方法であり、前記イオン液体は、四級ホスホニウムのカチオン、又は四級アンモニウムのカチオンと、BF、PF、N[SO(CF)CF]、N(SOF)、SOCF、SOCH、CFCOO、SCN、N(CN)、ハロゲン、(RO)POO、 (RO)PSS、RCOOから選択されるアニオンとから構成される、鉄族元素及び希土類元素のイオン液体を利用した回収方法。 (もっと読む)


61 - 80 / 435