説明

Fターム[4K017FB04]の内容

金属質粉又はその懸濁液の製造 (21,321) | 化学的製造条件 (1,723) | 還元剤 (1,041)

Fターム[4K017FB04]の下位に属するFターム

気体 (183)
液体 (697)
固体 (109)

Fターム[4K017FB04]に分類される特許

21 - 40 / 52


【課題】 金属微粒子の粒径分布が狭く且つ製造工程が簡単な金属微粒子分散液およびその製造方法を提供する。
【解決手段】 常温で昇華する樟脳が塩化白金酸と共に有機溶媒中に分散させられ、その塩化白金酸が還元させられて白金微粒子が生成されると、樟脳はターピネオールと共に、塩化白金酸を還元する還元剤および還元して生成された白金微粒子を分散させる分散剤として好適に機能するので、凝集等が生ずることなくナノメートルオーダの微細且つ粒径分布の狭い白金微粒子が生成され、白金微粒子分散液が得られる。すなわち、単一ステップの簡単な製造工程で白金微粒子分散液が得られる。しかも、樟脳は常温で昇華することから、白金微粒子分散液中の有機物は全て低温で消失させられる。そのため、本実施例の白金微粒子分散液は、有機物を除去して白金膜を形成するに際して高温で処理する必要がない。 (もっと読む)


【課題】ペレット化の際に不具合が生じにくく、キャパシタの容量を容易に大きくできるタンタル凝集粒子およびその製造方法を提供する。
【解決手段】本発明のタンタル凝集粒子は、以下の粒子径分布を有する。(粒子径分布)体積基準の粒子径の分布曲線において、ピーク高さの1/2の高さでのピーク幅における大粒子径側端部の粒子径をd、小粒子径側端部の粒子径をd、モード径をdとした際に、(logd−logd)/(logd−logd)≦0.8である。本発明のタンタル凝集粒子の製造方法は、フッ化タンタル酸カリウムの還元により得た嵩密度0.2〜1.0g/cmのタンタル2次粒子に水を添加しながら攪拌して含水粉を得る工程と、該含水粉に水を添加せずに攪拌して造粒粉を得る工程と、該造粒粉を乾燥させて乾燥粉を得る工程と、該乾燥粉を焼結させる工程とを有する。 (もっと読む)


【課題】表面が平滑化されており、さらに電極途切れの発生を確実に防止できる内部電極を備える積層セラミックコンデンサ、それに用いられる導電性ペースト、ニッケル粉末、またはニッケルを主成分とする合金粉末およびその製造方法を提供することを目的とする。
【解決手段】本発明のニッケル粉末、またはニッケルを主成分とする合金粉末は、球形状を有するとともに、平均粒子径D50が10〜300nmであり、かつ平均粒子径D50と粒子径の最大値Dmaxとの比(Dmax/D50)が3以下であることを特徴とする。 (もっと読む)


【課題】別途の前駆体物質を作製することなく、非水系システムにて一般的な銅塩を銅前駆体物質として用いて、サイズが均一で高濃度な銅ナノ粒子を合成することができ、環境に優しく、高価な装置を必要としない経済的な銅ナノ粒子製造方法及びこれにより製造された銅ナノ粒子を提供する。
【解決手段】CuCl、Cu(NO、CuSO、(CHCOO)Cu及び銅アセチルアセトネート(Cu(acac))からなる群より選ばれる少なくとも一つの銅塩を脂肪酸に混合して解離させて混合物を形成する段階と、上記混合物を加熱して反応させる段階とを含む、銅ナノ粒子の製造方法。 (もっと読む)


本発明は、Mo及びWを含有する複合体粉末の製造方法に関し、その際にMo又はW金属粉末を含む粉末状の出発物質Aを:出発物質AとしてMo又はMo−W合金が存在する場合に、Wの酸化物化合物を含む粉末状の出発物質Bと;又は出発物質AとしてWが存在する場合に、Moの酸化物化合物を含む粉末状の出発物質Bと、混合し、前記混合物中でMo対Wの質量比(V)を1:99〜99:1の大きさに調節し、かつ粉末混合物を、少なくとも一段階の還元過程にかけ、その過程で、出発物質A中に含まれる金属又は金属合金の粒子は少なくとも部分的に、好ましくは完全に、使用される出発物質Bの金属の層と共に重複成長される。 (もっと読む)


【課題】キャパシター用タンタルまたはニオブ粉末の製造方法を提供する。
【解決手段】陽極、陰極及び溶融塩を含む電解還元反応器におけるキャパシター用タンタル(Ta)またはニオブ(Nb)粉末の製造方法において、アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物と、アルカリ金属酸化物からなる溶融塩中、アルカリ金属酸化物を陰極で1次電解還元し、電解還元されたアルカリ金属により五酸化タンタル(Ta2O5)または五酸化ニオブ(Nb2O5)を部分的に還元してTa2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物を得る工程、及び前記アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物を陰極で1次電解還元して、Ta2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物と2次還元反応を進行してタンタルまたはニオブ粉末を得る工程を含む。 (もっと読む)


本発明は、チタン−アルミニウム化合物および数種のチタン合金ならびにチタン−アルミニウム金属間化合物および合金の製造のための段階的方法に関する。第1工程において、ある量のアルミニウムがある量の塩化アルミニウム(AlCl3)と混合され、ある量の四塩化チタン(TiCl4)が前記混合物に加えられる。前記混合物が220℃未満の温度に加熱され、TiCl3、アルミニウムおよびAlCl3の生成物が形成される。第2工程において、必要な場合さらなるアルミニウムを加えることができ、前記混合物は900℃を超える温度に再び加熱され、チタン−アルミニウム化合物が形成される。前記方法は、制御可能な組成を持つチタン−アルミニウム化合物の粉体化形態を製造する。好適な反応装置も記載されている。
(もっと読む)


【課題】樹脂等との接着性を向上させうる複合粒子およびその製造方法を提供する。
【解決手段】本発明方法は、カーボンナノチューブ等の微細繊維を分散させた溶液にニッケル源たるニッケル化合物を添加し、さらにアルカリを加えてアルカリ溶液とし、該アルカリ溶液を加温しながらヒドラジンまたはヒドラジン水和物からなる還元剤を添加してニッケルを還元することで得られる複合粒子の製造方法であって、前記アルカリ溶液に、硫酸イオン源、およびアンモニアもしくはアンモニウムイオン源、および硝酸イオン源から選ばれる1種以上を添加することにより、外表面に多数の錐状突起を有するニッケル粉を析出させると共に、該ニッケル粉中に、一部がニッケル粉から突出する微細繊維を取り込ませることを特徴とする。 (もっと読む)


【課題】凝集が少なく分散安定性及び経時安定性が高い金属微粒子分散物を提供する。
【解決手段】硫黄原子および/または窒素原子を1個以上有するアルカリ溶解性ポリマー存在下で、金属イオンを還元して得られた金属微粒子を含有する金属微粒子含有液を凍結乾燥法により乾燥してなることを特徴とする金属微粒子分散物である。前記金属微粒子のアスペクト比としては2.0以上であることが好ましい。また、前記アルカリ溶解性ポリマーが酸性基を有することが好ましく、該酸性基としてはカルボキシル基であることが好ましい。 (もっと読む)


【課題】フレーク銅粉を用いた銅ペーストに比べ取扱が容易で、微細回路配線の形成が可能で、低電気抵抗の導電膜形成の可能な銅ペーストに用いる銅粒子等を提供する。
【解決手段】上記課題を解決するため、湿式還元法により得られた銅粒子であって、当該銅粒子は、その粒子表面にコブ状の凹凸を備えたことを特徴とする銅粒子等を採用する。そして、この本件発明に係る銅粒子の製造は、銅イオンを含有した溶液中に塩素イオンを一定レベル以上含有させ、還元して銅粒子を得る際の還元プロセスを、亜酸化銅に還元するまでの段階と、その後銅粒子にまで還元する2段階の還元工程に分けて行う点に特徴を有する方法を採用することが好ましい。 (もっと読む)


【課題】比抵抗値の小さい(低い)導電性膜の製造を可能にする導電ペースト及び導電性ペースト用粉末を提供する。
【解決手段】平均粒子径が0.1〜0.6μmの導電性小粒子と平均粒子径が0.5〜1.0μmの導電性大粒子(小粒子の平均粒子径は、大粒子の平均粒子径よりも小さい)とを、小粒子と大粒子との質量比で表して、20:80乃至80:20の範囲の比(特に、20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲の比)にて混合してなる導電性粒子混合物、およびこの導電性粒子混合物を含有する導電ペースト。 (もっと読む)


【課題】分散安定性が高い形状異方性金属微粒子を製造し得る形状異方性金属微粒子の製造方法、薄膜で高濃度の着色が得られる着色組成物を提供する。
【解決手段】分子中にメルカプト基を有する高分子分散剤の存在下で金属化合物の還元を行う工程を有することを特徴とする形状異方性金属微粒子の製造方法、及び該形状異方性金属微粒子の製造方法により得られる金属微粒子を、SP値が25.8MPa1/2以下の溶媒中に含有させてなる着色組成物である。 (もっと読む)


【課題】300℃以下の低温焼成において密着性と導電性に優れた銀粒子主体の複合粒子粉を得る。
【解決手段】平均粒径(DTEM)が50nm以下で且つ結晶粒子径(Dx)が50nm以下の銀粒子粉と、平均粒径(DTEM)が100nm以下の銀以外の無機粒子粉とからなる複合粒子粉である。銀粒子粉は単結晶化度(DTEM/Dx)が2.0以下であり、銀以外の無機粒子粉は珪素、チタン、アルミニウムまたはジルコニウムの粒子粉またはこれら元素の無機化合物の粒子粉である。この複合粒子粉を液状有機媒体に分散させることによって低温焼成可能な分散液またはペーストにすることができる。 (もっと読む)


【課題】 液晶性化合物やその他の液状媒体に対して高濃度に分散する有機物被覆無機ナノ粒子を提供する。
【解決手段】 無機ナノ粒子が芳香族基を含んでもよい炭化水素鎖を有する有機被覆分子によって被覆された有機被覆無機ナノ粒子であって、有機被覆分子が一分子中に2〜5個の無機ナノ粒子に吸着可能な官能基をもち、この官能基が無機ナノ粒子表面に吸着した際の有機被覆分子の占有面積が前記炭化水素鎖の最大断面積の1.5倍以上となる有機分子である、有機被覆無機ナノ粒子。 (もっと読む)


【課題】酸化されにくい銅超微粒子が得られ、従来に比較して安価で生産性に優れた銅超微粒子の製造方法を提供すること。
【解決手段】(R−A)−Cu(但し、Rは炭化水素基、AはCOO、OSO、SOまたはOPOである。)で表される銅塩を合成用有機溶媒に溶解または分散してなる溶液を加熱することにより、銅塩に由来する銅成分から構成された銅コアと、銅塩に由来し、銅コアの周囲を覆う有機成分とを有する銅超微粒子を生成させるようにする。この際、加熱は、外部熱源またはマイクロ波照射によると良い。また、炭化水素基の炭素数は1〜40の範囲内にあると良く、合成用有機溶媒は、銅塩に対して還元性を示すものを用いると良い。 (もっと読む)


【課題】 微細な配線形成用途に適し、かつ低温焼結性が良好な高分散性の銀粒子粉末を安価かつ高い収率で得る。
【解決手段】 沸点80℃〜200℃のアルコール中または沸点150〜300℃のポリオール中で、銀塩を、有機保護剤および還元補助剤の共存下で且つ温度80℃〜200℃の範囲で還元処理する、極性の低い液状有機媒体への分散性に優れた銀粒子粉末の製造法を提供する。ここで、有機保護剤としては分子量100〜1000で構造内に不飽和結合をもつ1級アミンを使用し、還元補助剤としては2級アミンおよび/または3級アミンを使用する。還元処理で得られる銀粒子粉末は平均粒径DTEMが好ましくは50nm以下であり、粒子表面には前記の有機保護剤が被着している。このため、ナノ粒子であっても極性の低い液状有機媒体への分散性が良好である。 (もっと読む)


【課題】 本発明は、金属ナノ粒子の製造方法に関し、連続的に供給される金属化合物と還元剤とを含有する溶液に超音波を照射することにより、金属ナノ粒子を連続して合成する金属ナノ粒子の製造方法に関する。
【解決手段】 液相法により金属塩からなる溶液を用いて金属ナノ粒子を合成する製造方法において、あらかじめプレカーサーを調製し、該プレカーサーを連続的に反応場に輸送して、反応場の超音波照射セルでの照射エネルギーが10〜1000W/mlの超音波を照射することにより、金属ナノ粒子を合成することを特徴とする金属ナノ粒子の製造方法である。 (もっと読む)


【課題】微粒領域の粉粒を含む高結晶性の銀粉であって、良好な粒度分布を備える高結晶性銀粉の製造方法及びその製造方法で得られた高結晶性銀粉を提供する。
【解決手段】銀粉を製造する方法として、ゼラチンと硝酸銀と硝酸とを水に溶解させた液温45℃〜55℃の第1水溶液と、エルソルビン酸及び/又はアスコルビン酸と水溶性有機酸とを溶解させた第2水溶液とを調製し、第1水溶液に対し第2水溶液を緩やかに添加し、添加が終了した後、攪拌して粒子成長を行い銀粒子を生成し、その後、静置して銀粒子を沈降させた後に、上澄みを廃棄し、濾過、洗浄を行ない高結晶銀粉を得ることを特徴とした高結晶銀粉の製造方法を採用する。 (もっと読む)


【課題】微粒であり、粒度分布がシャープなニッケル粒子を提供すること、及び該ニッケル粒子を用いた導電性ペーストを提供すること。
【解決手段】上記課題を達成する事の出来るニッケル粒子を得るため、ニッケル塩及びポリオールを含む反応液を還元温度まで加熱して、該反応液中のニッケル塩を還元するニッケル粒子の製造方法であって、前記反応液を昇温加熱し前記還元温度に達する前の段階で、該反応液中にカルボキシル基及び/又はアミノ基を含むカルボン酸類又はアミン類、貴金属触媒を含有させることを特徴とするニッケル粒子の製造方法を採用する。そして、この製造方法を用いると、画像解析平均粒径が1nm〜300nmのニッケル粒子を得ることができる。 (もっと読む)


【課題】形態、粒子径が均一で高結晶性の金属ナノ粒子及びその製造方法を提供すること。
【解決手段】金属の塩から金属ナノ粒子を製造する製造方法において、金属配位性を有する有機化合物を含む第1の溶液に金属の塩を添加することにより金属の金属粒子を析出させる還元工程と、有機配位子を含む第2の溶液に金属粒子中の欠陥粒子を溶解させながら、金属粒子中の無欠陥粒子の結晶を成長させる熟成工程と、を備えることから成る金属ナノ粒子の製造方法である。金属ナノ粒子の平均粒子径は10〜30nmである。 (もっと読む)


21 - 40 / 52