説明

Fターム[4K018BC13]の内容

粉末冶金 (46,959) | 粉末の処理 (4,435) | 混合 (1,090) | 湿式法 (224)

Fターム[4K018BC13]に分類される特許

1 - 20 / 224


【課題】従来のTiC基サーメットやTiCN基サーメット等に比し、優れた硬度と高い破壊靱性を有し、切削工具部材、耐摩耗性工具部材等として極めて有用な新規なサーメットを提供する。
【解決手段】結合相として少なくとも鉄族金属を含み、硬質相として少なくとも周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物および/またはこれらの固溶体から選ばれた一種以上を含むサーメットであって、さらに、Cuおよび/またはZnが、鉄族金属に対して0.4〜20質量%の割合で含有されていることを特徴とする。 (もっと読む)


【課題】工具素材に適した超硬合金であって、偏摩耗を低減して、工具寿命の延命に寄与することができる超硬合金を提供する。
【解決手段】炭化タングステン(WC)の粒子間がコバルト(Co)を主体とする結合相により結合された超硬合金であって、WC粒子は、平均粒径が0.1μm以上0.5μm以下、結合相は、Coを5質量%以上12質量%以下含有する。結合相は、平均厚みが0.14μm以下であり、かつ結合相全体に対して、結合相の厚みが0.5μm以上である割合が0.15%以下である。本発明超硬合金は、超微粒のWC粒子(図1(I)において灰色部分)間に結合相(同黒色部分)が薄くかつ均一的に存在し、結合相がミクロに凝集したり、偏在したりしていない。このような組織を有する超硬合金をマイクロドリルに利用すると、偏摩耗を抑制できて、長期に亘り位置精度に優れる加工が行える。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】DYまたはTBを用いてND−FE−B焼結永久磁石を作製する方法および永久磁石を提供すること。
【解決手段】永久磁石を作製する方法が記載されている。一実施形態では、本方法は、所望の組成を有する第1の合金粉末を準備するステップであり、合金粉末はネオジム、鉄およびホウ素を含有する、準備するステップと、第1の合金粉末が、ジスプロシウム、テルビウムまたは両方の容積濃度を超過しているジスプロシウム、テルビウムまたは両方の表面濃度を有するように、ジスプロシウム、ジスプロシウム合金、テルビウムまたはテルビウム合金で第1の合金粉末を被覆するステップと、粉末冶金法を用いて、被覆された合金粉末から永久磁石を形成するステップであり、永久磁石はジスプロシウム、テルビウムまたは両方の非均一分布をその中に有する、形成するステップとを含む。また、永久磁石が記載されている。 (もっと読む)


【課題】一般に用いられている安価な材料を用い、溶湯法で用いられるよりも少ないエネルギーによって作製することができ、広範囲の寸法および形状(特に大面積)を有する優れた熱伝導性かつ軽量な金属基炭素繊維複合材料を提供する。
【解決手段】炭素繊維を有機バインダーおよび溶剤と混合して塗布混合物を準備する工程と、シート状もしくはフォイル状の金属支持体上に塗布混合物を付着させて、金属支持体上に炭素繊維含有被膜が形成されたプリフォームを形成する工程と、プリフォームを積み重ねて、プリフォーム積層体を形成する工程と、プリフォーム積層体を真空中または非酸化雰囲気中で加熱圧接して、前記プリフォーム同士を一体化させる工程とを備えた、金属基炭素繊維複合材料の製造方法。 (もっと読む)


【課題】従来よりも硬質相粒子の粒度分布の偏りが小さい超硬合金を提供する。
【解決手段】WC粒子を主体とする硬質相がCoを主体とする結合相により結合されてなる超硬合金である。この超硬合金の硬質相を構成するWC粒子の平均粒径が0.4μm未満であり、かつ、WC粒子径の均一性を表す指標である分散度数が0.55以下である。ここで、分散度数は、WC粒子の粒度分布の半値幅(累計頻度75%のときの円相当直径−累計頻度25%のときの円相当直径)を、WC粒子の平均粒径(50%粒径)で除した値である。このような超硬合金は、従来よりも優れた耐摩耗性・耐欠損性を有しているので、種々の加工工具に好適に利用できる。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることを可能とした永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】従来よりも耐欠損性を高め、切削工具の寿命を長くすることができるサーメットを提供することを目的とする。
【解決手段】表面から内部に向って2〜200μmの厚さで、板状炭化タングステンを主成分とする炭化タングステン相と、鉄族金属を主成分とする結合相とからなる表面領域が形成され、表面領域よりも内部に、粒状炭化タングステンを主成分とする炭化タングステン相と、Ti、Wの炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とからなる内部領域が形成されたサーメット。 (もっと読む)


【課題】長期間の使用によっても割れや欠けが生じ難く耐久性に優れた焼結粒子及びその製造方法を提供する。
【解決手段】金属鉄とFeとを主成分とし、空隙率を5%以下とする。ここで、焼結粒子の機械的強度を一層向上させる観点からは、粉末X線回折によるFeの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を0.05〜0.70の範囲とするのが好ましい。また、BET法による比表面積を0.09m/g以下、かつ真比重を4.95g/cm以上とするのが好ましい。さらには、飽和磁化を70A・m/kg〜120A・m/kgの範囲とするのが好ましい。 (もっと読む)


【課題】Ni基合金、Co基合金等の耐熱合金の転削加工において、長期の使用にわたって、すぐれた耐欠損性を発揮する切削工具を提供する。
【解決手段】WC基超硬合金製切削工具において、結合相成分であるCoの含有量は4〜12質量%、結合相中のRe含有量は3〜20質量%であり、硬質相のWC粒内界面近傍にはReの富化領域が形成され、該富化領域は、WC粒子の表面から、その粒径の1〜10%の深さ領域にわたって形成され、かつ、該領域における平均Re含有量は0.2〜7質量%であって、また、必要に応じて、超硬合金の成分として、VC、Cr、TiC、TaC、NbCを含有させ、あるいは、切削工具表面に硬質被覆層を蒸着形成する。 (もっと読む)


【課題】従来よりも高品質の酸化物分散強化型白金合金を安定的に製造することのできる方法を提供する。
【解決手段】本発明は、容器、粉砕媒体、攪拌棒を備える粉砕装置により、溶媒中で白金合金からなる被粉砕物を粉砕処理する工程を含む酸化物分散強化型白金合金の製造方法において、前記容器、粉砕媒体、攪拌棒の少なくとも被粉砕物との接触面を白金又は白金合金で構成し、前記溶媒に過酸化水素溶液を投入して粉砕を行うものであることを特徴とする酸化物分散強化型白金合金の製造方法である。 (もっと読む)


【課題】金属−セラミックス複合材料を覆う余剰金属の除去作業の容易を図ることができる金属−セラミックス複合材料を製造する方法等を提供する。
【解決手段】板状粒子2を含むスラリー2’が、セラミックス成形体1’の表面に塗布された上で乾燥される。続いて、溶融金属3’が板状粒子2同士の間隙を通じてセラミックス成形体1’に加圧浸透させられる。そして、余剰金属3が離型材としての板状粒子2とともに複合材料1の表面から除去されることにより、最終製品としての金属−セラミックス複合材料1が得られる。 (もっと読む)


【課題】切刃に衝撃的かつ断続的高負荷が作用する鋼や鋳鉄の断続重切削加工において、すぐれた耐チッピング性と耐熱塑性変形性を発揮する表面被覆超硬合金製インサートを提供する。
【解決手段】WC粉末、Co粉末を含むとともに、(a)Zr化合物粉末、Nb化合物粉末およびTa化合物粉末、(b)NbとTaの複合化合物粉末とZr化合物粉末、(c)NbとTaとZrの複合化合物粉末、(d)NbとZrの複合化合物粉末とTa化合物粉末、(e)TaとZrの複合化合物粉末とNb化合物粉末、上記(a)〜(e)の少なくともいずれかを必須の粉末成分とする配合原料を成形、焼結したWC超硬合金の基体に硬質被覆層を蒸着する。基体表面に形成したCo富化表面領域のCo含有量を超硬合金内部のCo含有量の1.30〜2.10(質量比)、かつCo富化表面領域のNb及びTaの合計含有量を同領域のCo含有量の0.025〜0.085(質量比)とする。 (もっと読む)


【課題】 バラツキが少なく高い抗折強度を備えた超硬合金と、これを用いて小径孔あけ加工や高送り切削に対しても優れた耐折損性を有する回転工具を提供する。
【解決手段】 平均粒径が0.1〜0.4μmの炭化タングステン粒子2、2間を3〜13質量%のコバルトを主体とする結合相3にて結合した超硬合金1の透過型電子顕微鏡観察において、粒径0.05μm以下の炭化タングステン粒子4の数が炭化タングステン粒子2全体の数に対して10%以下、抗磁力34,000〜56,000A/m、コバルト1質量%当りの換算で飽和磁化率1.35〜1.65μTm、かつ超硬合金を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを8〜24質量%、クロムを3〜6質量%、バナジウムを0.6〜1.5質量%の割合で含有する。 (もっと読む)


【課題】伝導性ペースト及びその製造方法を提供する。
【解決手段】伝導性ペーストは、1〜2の縦横比を持つ金属ナノ粉末102及び3〜300の縦横比を持つ金属ナノロッド104を含む。前記金属ナノロッドの縦横比は、3〜300であり、前記金属ナノ粉末の縦横比は、1〜2である。また、前記金属ナノ粉末及び前記金属ナノロッドは、金、銀、銅、白金、ニッケル、シリコン、パラジウム、鉛、錫、インジウム、アルミニウムの金属群から選択される一つまたは二つ以上の金属からなる。 (もっと読む)


【課題】すぐれた耐チッピング性と耐熱塑性変形性を発揮する表面被覆超硬合金製インサートを提供する。
【解決手段】原料として少なくともWC粉末、Co粉末を含むとともに、さらに、Zrの炭化物、炭窒化物、窒化物粉末のうちの1種または2種以上、および、Taの炭化物、炭窒化物、窒化物粉末のうちの1種または2種以上、またはZrとTaの炭化物、炭窒化物、窒化物のうちの1種または2種以上の固溶体粉末を含む配合原料を成形、焼結して得られるWC基超硬合金を基体とし、この基体上に硬質被覆層を蒸着形成した表面被覆超硬合金製インサートにおいて、基体表面にはCo富化表面領域が形成され、かつ、Co富化表面領域におけるCo含有量は、超硬合金内部のCo含有量の1.30〜2.10(質量比)を満足し、かつ、Co富化表面領域におけるTa含有量は、Co富化表面領域におけるCo含有量の0.026〜0.086(質量比)とする。 (もっと読む)


【課題】Ni基合金、Co基合金等の耐熱合金の転削加工において、長期の使用にわたって、すぐれた耐欠損性を発揮する切削工具を提供する。
【解決手段】WC基超硬合金製切削工具において、結合相成分であるCoの含有量は4〜12質量%であり、また、結合相中には3〜20質量%のReが固溶し、硬質相のWC粒子表面にはReの拡散薄層が形成され、該拡散薄層は、WC粒子の表面から、その粒径の1〜10%の深さ領域にわたって形成され、かつ、該領域における固溶Re含有量は0.2〜7質量%であって、また、必要に応じて、超硬合金の成分として、VC、Cr、TiC、TaC、NbCを含有させ、あるいは、切削工具表面に硬質被覆層を蒸着形成する。 (もっと読む)


【課題】熾烈な環境に曝露された場合に腐食耐性および酸化耐性を備えた、希土類−遷移金属−ホウ素(RETM−B)粉およびボンド磁石製品を提供する。
【解決手段】急速凝固法から製造したネオジウム−鉄−ホウ素型磁性粉をコーティング製剤でコートする。このコーティング製剤は、エポキシバインダー、硬化剤、促進剤、および潤滑剤を含むのが好ましい。カップリング剤および任意で他の特別な添加物を磁性粉と有機エポキシ成分に組み込むことによって、酸化および腐食防止性を増強し、フィラーとマトリックス相の間の接着性および分散性を高めることができる。さらに、急速凝固によって生成された希土類−遷移金属−ホウ素(RETM−B)粉材料の組合せおよび塗布方法を規定する。 (もっと読む)


【課題】磁気性能を向上させることが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、単磁区粒子径(例えば0.2μm〜1.2μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


【課題】保磁力を向上させ、磁石の使用温度の限界を向上させ、耐熱性の向上を図ることを可能とした高保磁力異方性磁石及びその製造方法を提供する。
【解決手段】磁石原料をHDDR法により微粉砕したHDDR粉末41に対して、M−(OR)(式中、MはDy、Tb、Hoの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を真空中又は不活性化ガス雰囲気下において600℃以上900℃未満で0.01分以上1時間未満保持することにより加熱処理を行う。更に、加熱処理された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


1 - 20 / 224