説明

Fターム[4K018CA04]の内容

粉末冶金 (46,959) | 成型 (4,566) | 成型条件が特定されているもの (2,035) | 磁場中で行うもの (408)

Fターム[4K018CA04]に分類される特許

161 - 180 / 408


【課題】希少資源である重希土類元素RHを有効活用し、その使用量を低減させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有するバルク体2を処理室11内に配置した後、処理室11を700℃以上1100℃以下に加熱することにより、処理室11内の少なくともバルク体2の近傍にRH蒸気雰囲気を形成する。次に、この処理室11内にR−Fe−B系希土類焼結磁石体1を搬入し、この焼結磁石体1をバルク体2と対向配置させて10分以上600分以下の時間保持する。こうして、重希土類元素RHを焼結磁石体1の表面に供給しつつ、重希土類元素RHを焼結磁石体1の内部に拡散させる。 (もっと読む)


【課題】少ない重希土類元素量でより大きな保磁力の希土類永久焼結磁石を製造できる希土類永久焼結磁石の製造方法を提供する。
【解決手段】主相を構成するコアと、コア周囲のシェル及び/又は粒界相とを少なくとも備える組織を有する焼結体からなり、コアはシェル及び/又は粒界相より重希土類元素の量比が低い低希土類組成で構成され、シェル及び/又は粒界相はコアより重希土類元素の量比が高い高重希土類組成で構成される希土類永久焼結磁石の製造方法であって、高重希土類組成物の粒子と、低重希土類組成物の粒子とを混合して混合物を得る工程と、混合物を磁場中成形して成形体を得る工程と、成形体を焼結する工程とを備え、前記低重希土類組成物の粒子の平均粒径が6μm以下であり、高重希土類組成物の粒子の平均粒径は低重希土類組成物の粒子の平均粒径よりも小さい、希土類永久焼結磁石の製造方法。 (もっと読む)


【課題】 保磁力が低下する原因となる配向の乱れや原料となる微粉末の飛散を生じることなく磁気異方性希土類焼結磁石を製造することができる方法を提供する。
【解決手段】 秤量・充填部41及び高密度化部42において、磁気異方性希土類焼結磁石の原料となる微粉末を所定の密度になるように充填容器に充填し、磁界配向部43においてパルス磁界により微粉末を配向させた後、微粉末をプレスすることなく焼結炉44において焼結する。従来の方法では微粉末をプレスしていたため、磁場により生じた微粒子の配向が、プレス工程及びプレス工程に必要となる消磁工程より乱れていた。本発明の方法ではこのような配向の乱れは生じない。また、微粉末をプレスすることがないことから、微粒子の飛散を防ぐことができる。 (もっと読む)


【課題】残留磁束密度および保磁力が共に高いNdFe14B系焼結磁石を、安定して容易に製造する。
【解決手段】成形体を焼結してR:28〜32質量%、B:0.8〜1.2質量%、残部:Feからなる焼結磁石を得る焼結工程とを有し、原料合金を粉砕して得られた粉砕粉を原料と呼んだとき、酸素含有量が相対的に多くなるように製造され、酸素含有量が1200〜5000ppm(質量比)の原料である酸素リッチ原料の少なくとも1種と、酸素含有量が相対的に少なくなるように製造され、酸素含有量が300〜1000ppm(質量比)であり、かつ酸素リッチ原料より酸素含有量が1000ppm(質量比)以上少なく、さらに酸素含有量を除いた組成が酸素リッチ原料と異なる原料である酸素プア原料の少なくとも1種とを、成形工程の前に混合する希土類焼結磁石の製造方法。 (もっと読む)


【課題】 Brを良好に維持しながらHcJを向上させることができる希土類磁石の製造方法を提供すること。
【解決手段】 本発明の好適な希土類磁石の製造方法は、複数の原料化合物から構成される原料粉末を成形して成形体を得る成形工程と、成形体を焼成する焼成工程とを有しており、原料化合物として、第1の原料化合物:R−T−B化合物及びR−T−B化合物から選ばれる少なくとも1種の化合物(但し、RはYを含む軽希土類元素を示し、Rは重希土類元素を示し、Tは希土類元素を除く金属元素を示し、少なくともFeを含む。)、第2の原料化合物:R−T化合物、R−T化合物及びR−T化合物から選ばれる少なくとも1種の化合物、並びに、第3の原料化合物:Rを含み、第1及び第2の原料化合物よりも融点が高い化合物を用いる。 (もっと読む)


【課題】キャビティの軸方向での磁場勾配を軽減し、配向時の磁性粉末の偏りを少なくするラジアル異方性リング磁石の製造装置を提供する。
【解決手段】軸方向に向けて相互に対向する磁界を発生する一対のコイル10A及び10Bと、一対のコイル10A及び10B間に配置され、コア22及びコア22の周囲に配置されたダイ21を有し、コア22とダイ21の間に磁性粉末が供給されるキャビティ28が形成される金型20を備え、コア22において、その芯部からキャビティ28の軸方向中央部に対応する箇所の磁気抵抗が、キャビティ28の軸方向両端部に対応する箇所の磁気抵抗に比して小なる部分22Aを設けている。 (もっと読む)


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】焼結後に焼結体がモールドに溶着することのないNdFeB系焼結磁石の製造方法を提供する。
【解決手段】モールド16の内面に焼き付き防止用のコーティング17を施し、このモールド16にNdFeB系磁石用合金粉末を充填して磁界中で配向させた後にモールド16ごと加熱することにより、NdFeB系磁石を製造する。コーティング17の材料には、樹脂と焼結温度で溶融しない無機物質との混合物を好適に用いることができる。この場合、1回焼結処理を行う毎に、新しくコーティングを施す。また、コーティング17の材料には、BN(窒化硼素)、TiN(窒化チタン)、Al2O3(アルミナ)等のセラミックを用いることもできる。 (もっと読む)


【課題】NdFeB磁石の生産コストを削減し、生産効率を向上させることができるNdFeB磁石製造用モールドを提供する。
【解決手段】モールド材料としてFe-Ni合金(Fe若しくはNiの純金属、Fe合金、又はNi合金を含む)を使用し、モールド内面に焼き付き防止コーティングを施す。Fe-Ni合金を用いたモールドは、安価であり、加工が容易であるうえ、繰り返し使用しても脆化しないため、NdFeB磁石の生産コストの削減と生産効率の向上に寄与する。また、Fe-Ni合金は従来のモールド材料よりも焼結体が焼き付き易いため、焼き付き防止コーティングによりそれを防止する。 (もっと読む)


【課題】周方向及び軸方向における配向度及びBrの均一性に優れた長尺なリング状磁石を得ることができ、しかも、生産効率及び経済性を格段に向上させることができるリング状磁石の製造方法等を提供する。
【解決手段】円筒状キャビティが画成された金型20に収容された磁性粉Mを磁場配向する磁化工程において、まず、6個の磁極部6a〜6fのうち、互いに隣接する磁極部6b,6cを同一極性の一方極とし、且つ、それらに180°対向配置された磁極部6e,6fを反対極性の他方極として磁場配向を行う。次に、一方極及び他方極の各々の磁極部の組み合わせを変化させ、具体的には、磁極部6d,6eから一方極を構成し、且つ、磁極部6a,6bから他方極を構成して磁場配向を行なう。 (もっと読む)


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】
希土類ボンド磁石の磁気特性の向上,低コスト化、及び高温高圧高湿環境下での磁気特性維持が課題である。
【解決手段】
上記課題を解決するために、樹脂を含有させないで希土類磁石用磁粉単体で冷間成形を行うことで磁石の磁気特性向上を図り、高耐食性かつ熱減磁抑制効果を有する相を得るような熱処理を実施する。その後磁石の強度を確保するために低粘度のSiO2 前駆体を磁石成形体中に含浸し熱硬化することで磁気特性向上かつ低コスト化を両立させた希土類ボンド磁石を得ることができる。 (もっと読む)


【課題】酸素量1500質量ppm以下の希土類合金粉末の乾式プレスを行い、酸化耐性に優れたR−Fe−B系希土類磁石を製造する。
【解決手段】本発明のR−Fe−B系希土類磁石の製造方法は、希土類含有量が27.5質量%〜30.5質量%であり、かつ酸素含有量1500質量ppm以下の希土類合金粉末を乾式プレス法によって圧縮成形し、それによって成形体を作製するプレス工程と、前記成形体の表面から油剤を前記成形体に含浸させる工程と、前記成形体を焼結させる工程とを包含する。 (もっと読む)


【解決手段】下記組成
Ra-T1b-Bc(RはY及びScを含む希土類元素、T1はFe及び/又はCo、a、b、cは原子百分率を示し、12≦a≦20、4.0≦c≦7.0、残部b。)
からなる焼結体に対し、
R1i-M1j(R1はY及びScを含む希土類元素、M1はAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、15<j≦99、iは残部。)
からなり、かつ金属間化合物相を70体積%以上含む合金の粉末を、上記焼結体の表面に存在させた状態で、当該焼結体及び当該粉末を当該焼結体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施す希土類永久磁石の製造方法。
【効果】本発明によれば、生産性に優れると共に、高性能で、残留磁束密度の低減を抑制しながら保磁力を増大させたR-Fe-B系焼結磁石を提供できる。 (もっと読む)


【解決手段】R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれ、5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)の希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれ、上記永久磁石より卑な電位を持つフレーク状微粉末とシリコーン樹脂とを含む処理液による処理膜を加熱することによって得られる複合皮膜を形成してなる耐食性希土類磁石。
【効果】本発明によれば、耐食性永久磁石を安価に提供することができる。 (もっと読む)


【課題】 NdFe14B系磁石よりも温度特性に優れ、SmFe17よりも飽和磁化の高い永久磁石とその製造方法と、それに用いられる永久磁石材料とを提供すること。
【解決手段】 永久磁石材料は、SmFe17−x系磁石粉末(但し,MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる少なくとも1種以上,x=0〜3,y=1〜4)を10〜95質量%含有し、かつ、飽和磁化の値が単体で1.4T以上を示す強磁性体を90〜5質量%含有する。永久磁石は、永久磁石材料に結合剤を混合して固化することで得られる。 (もっと読む)


【課題】磁気特性および放熱性に優れるとともに、長期にわたって高い耐食性を維持し得る圧粉磁心、およびかかる圧粉磁心を備えた信頼性の高い磁性素子を提供すること。
【解決手段】チョークコイル80は、コイル状に成形された導線82を、圧粉磁心81の内部に埋設してなるものである。圧粉磁心81は、その内側に位置する本体部811と、この本体部811の全体を覆うように設けられた被覆部812とを有する。このうち、本体部811は、第1のFe系合金で構成された第1の軟磁性粉末をバインダで結着してなる加圧成形体で構成されている。一方、被覆部812は、第1のFe系合金にCrを4〜20wt%の割合で添加した第2のFe系合金で構成された第2の軟磁性粉末をバインダで結着してなる加圧成形体で構成されている。 (もっと読む)


【課題】本体部とこの本体部の表面を覆うように設けられた被覆層とを有し、これらの部分が互いに異なる種類の粉末を含んでなる機能性に優れた複合成形体を容易に製造可能な成形体の製造方法および成形装置、および、かかる成形体の製造方法で製造された複合成形体を焼成してなる焼結体を製造する焼結体の製造方法を提供すること。
【解決手段】本発明の成形体の製造方法は、成形型10のキャビティ15内に、磁性材料で構成された第1の粉末を含む第1の造粒粉末51を供給する第1の工程と、キャビティ15内に磁界を付与することにより、第1の造粒粉末51をキャビティ15の内壁面に吸着させる第2の工程と、内壁面に第1の造粒粉末51を形成させたキャビティ15内に、第1の粉末と種類の異なる第2の粉末を含む第2の造粒粉末52を供給し、成形する第3の工程とを有する。これにより、2層構造の複合成形体が得られる。 (もっと読む)


【課題】熱及び電気の伝導性に優れる複合材料を提供する。
【解決手段】この複合材料は、磁性流体にNi粉末およびCu粉末を分散させてなる磁気混合流体と液状の弾性高分子材料の混合物を磁場の存在下で硬化させることによって得られる。この複合材料の内部には、Cu粉末とNi粉末とが凝集して形成される網状(ネットワーク状)のクラスタが形成される。 (もっと読む)


【課題】磁性粉末を高度に磁場配向させることが可能であり、これにより生産性及び経済性に優れる金属焼結磁石の製造方法を提供する。
【解決手段】金属原料を準備し、それを粉砕して得た磁性粉体を一旦攪拌して攪拌物を作製する(攪拌工程S13)。このとき、磁性粉体中で凝集した2次粒子が1次粒子へと解砕される。次いで、その攪拌物に第1の溶媒を添加して混練し混練物を作製する(混練工程S14)。この混練物をもとにスラリーを作製し(スラリー化工程S15)、それから、スラリーの湿式成形を行い(湿式成形工程S16)、その成形体から第1の溶媒を除去(溶媒除去工程S17)してから焼結を行い(焼結工程S18)、その後、更に時効処理(時効処理工程S19)を施して金属焼結磁石を得る。 (もっと読む)


161 - 180 / 408