説明

Fターム[4K018EA11]の内容

粉末冶金 (46,959) | 成型と焼結を同時に、交互に行うもの (1,683) | 熱間静水圧加圧(HIP) (483)

Fターム[4K018EA11]の下位に属するFターム

Fターム[4K018EA11]に分類される特許

1 - 20 / 219


【課題】
金属マトリックス中に金属被覆ダイヤモンド粒子を含有してなる複合ヒートシンク材において、熱伝導性の改良されたヒートシンク材を提供すること。
【解決手段】
本発明のヒートシンク材は次の各工程を経て製造される:
1. 整粒されたダイヤモンド粒子の全表面に、パイロゾル法によって金属炭化物層を形成することによって被覆ダイヤモンド粒子を得る工程、
2. 前記被覆ダイヤモンド粒子とマトリックス金属材の粉末とを密に混合して混合粉とし、焼結反応容器内に充填する工程、
3. 前記混合粉を還元性雰囲気中で加熱することによって酸素を除去する工程
4. 前記反応容器をマトリックス金属材の融点以上の加熱温度及び100MPa以上の焼結圧力に供し、該金属材を溶融して被覆ダイヤモンド粒子間の空隙に流入・充填し、金属炭化物層を介してダイヤモンド粒子及び金属材を一体化させる工程。 (もっと読む)


【課題】 機械加工性に優れ、主としてCu,Gaを含有する化合物膜が成膜可能なスパッタリングターゲット及びその製造方法を提供すること。
【解決手段】 本発明のスパッタリングターゲットは、スパッタリングターゲット中の全金属元素に対し、Ga:15〜40原子%を含有し、さらに、Bi:0.1〜5原子%を含有し、残部がCu及び不可避不純物からなる成分組成を有する。このスパッタリングターゲットの製造方法は、少なくともCu,GaおよびBiの各元素を単体またはこれらのうち2種以上の元素を含む合金を1050℃以上に溶解し、鋳塊を作製する工程を有する。または、少なくともCu,GaおよびBiの各元素を単体またはこれらのうち2種以上の元素を含む合金の粉末とした原料粉末を作製する工程と、原料粉末を真空、不活性雰囲気または還元性雰囲気で熱間加工する工程を有している。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】湿式粉砕の粉砕性を向上させることにより、磁気性能を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末と一般式M−(OR)x(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2〜16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に有機金属化合物を付着させる。その後、有機金属化合物を付着させた磁石粉末を成形して焼結を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】 耐酸化性および高温強度に優れたFe基粉末緻密固化成形体を提供する。
【解決手段】 質量%で、Cr:9〜30%、Al:1〜10%、Si:0.05〜1.0%、N:0.01〜0.20%、残部Fe、および不可避不純物からなるフェライト系ステンレス鋼であって、フェライト組織中に1μm以下の微細窒化物が400μm平方に30個以上分散してなることを特徴とする高温強度およびクリープ強度に優れたFe基粉末緻密固化成形体である。 (もっと読む)


【課題】サファイア単結晶の製造時のように2000℃以上の高温での使用環境下において、開封部の形状変化を抑制した耐久性に優れたルツボを提供する。
【解決手段】タングステンまたはモリブデンを主成分とするルツボ本体部とルツボ本体部の側壁部5に融点2100℃以上の金属または合金からなるリング状補強部材3を具備するルツボ1であって、前記リング状補強部材3は、タングステンまたはタングステンを主成分とする合金からなることが好ましく、また、ルツボ本体部の高さL1とリング状補強部材の高さL2の比(L2/L1)が0.001〜1であることが好ましい。 (もっと読む)


【課題】特に、組成が均一で、しかもニアネットシェイプに好適であり、更に、チタン合金および同チタン合金を安価に製造しうる原料としてのチタン合金の水素化方法を提供する。
【解決手段】1気圧(100kPa)〜3.5気圧(350kPa)の圧力範囲、500℃〜770℃の温度範囲にてチタン合金に水素ガスを接触させ、反応させることを特徴とするチタン合金の水素化方法。この方法においては、チタン合金に水素ガスを室温で接触させ、600℃〜770℃まで昇温し、その後、降温することが好ましく、生成された水素化チタン合金中の水素の含有率が、3.9%以上であることが好ましい。 (もっと読む)


【課題】チタン合金の水素化において、特に、組成が均一で、しかもニアネットシェイプに好適であり、更に、チタン合金および同チタン合金を安価に製造しうる水素化チタン合金粉を提供する。
【解決手段】 チタン合金水素化物であって、3.9%以上の水素を含有し、かつ、粉末X線回折測定における2θ=35°近傍の半値幅が0.85゜以下である。また、このチタン合金水素化物は、チタン合金と水素ガスを1気圧(100kPa)以上、3.5気圧(350kPa)以下で、更に、炉内温度を500℃〜770℃にてチタン合金で反応させることにより製造しうる。 (もっと読む)


【課題】長期間の使用にわたって、すぐれた耐摩耗性を発揮する合金鋼製エンドミル、表面被覆合金鋼製エンドミルを提供する。
【解決手段】質量%で、C:2.0〜3.0%、Si:3.0〜6.0%、Cr:9.0〜15.0%、Co:10.0〜15.0%(好ましくは、C+Si+Cr+Co:25.0〜35.0%)、WおよびMoのうちの1種または2種の合計:9.0〜11.0%、V:1.5〜2.5%、残部はFeおよび不可避不純物からなる高温焼戻し軟化抵抗性を有する合金鋼で工具基体を構成した合金鋼製エンドミル、表面被覆合金鋼製エンドミル。 (もっと読む)


【課題】 高温軟化抵抗性に優れた高強度金型の製造方法を提供する。
【解決手段】 工具鋼粉末と酸化物粉末との混合粉末であって、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含有し、かつ、体積%で酸化物を0.3〜5.0%含有する混合粉末をメカニカルミリングした後、熱間静水圧プレスによって固化し、型彫り面形状に機械加工して焼入れ焼戻しするか、または、焼入れ焼戻しして型彫り面形状に機械加工する高強度金型の製造方法において、前記熱間静水圧プレスは、プレス時の圧力をP(MPa)、温度をT(℃)としたときに、P≦200、T≦1100であり、かつ、Log10P≧−0.00135×T+3.40の条件で行う金型の製造方法である。好ましくは、T≦1050である。そして、前記混合粉末をメカニカルミリングした後、金型基体の表面に固化する高強度金型の製造方法である。 (もっと読む)


【課題】磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。 (もっと読む)


【課題】異種金属溶接が介在せず且つ溶接後の熱処理の必要性を省いたヘッダアセンブリの製造方法を提供する。
【解決手段】ヘッダアセンブリ10のリバースモールド(逆形の型)を提供するステップと、リバースモールド10のヘッダ部分を微粒化低合金粉末で充填することでヘッダ部分12を形成するステップと、管部分11を形成するステップとを含んでいる。管部分は、[リバースモールドの]管部分の第1部分13を微粒化低合金鋼粉末で充填すること、低合金鋼からオーステナイトステンレス鋼へと段階的に変化する一連の微粒化鋼粉末で管部分の第2部分を充填することで移行領域14を形成すること、及び、管部分の第3部分15を微粒化オーステナイトステンレス鋼粉末で充填すること、によって形成される。この方法は更に、微粒化粉末を高温、高圧雰囲気中で固めて溶融させるステップを含む。 (もっと読む)


【課題】 本発明の目的は、Moの分散性が良い、均一微細な組織をもったMoTiターゲット材の製造方法およびMoTiターゲット材を提供することである。
【解決手段】 本発明は、(1)Mo一次粒子が凝集したMo凝集体を平均粒径10μm以下に解砕してMo粉末を作製する工程と、(2)前記Mo粉末と平均粒径50μm以下のTi粉末とを混合して混合粉末を作製する工程と、(3)前記混合粉末を加圧焼結してMoTi焼結体を作製する工程とを有するMoTiターゲット材の製造方法である。 (もっと読む)


【課題】ホウ化アルミニウムを含む、耐摩耗性材料、金属コーティング、粉末材料、ワイヤー材料、又は冶金製品を提供する。
【解決手段】マトリックス材料の硬度を増大し、その耐摩耗性を改善するための硬質相材料を提供する。硬質材料はAlB8-16構造を有するホウ化アルミニウム材料である。ホウ化アルミニウム硬質相は、粒子状ホウ化アルミニウムをマトリックス材料と混合、マトリックス材料からのホウ化アルミニウムの析出を介してマトリックス材料に組み込んでもよい。ホウ化アルミニウム硬質相を含む材料を硬質耐摩耗性材料を提供するために、コーティング用途に用いてもよい。冶金生成物の硬度及び耐摩耗性を改善するために、ホウ化アルミニウム硬質相を冶金生成物に組み込んでもよい。 (もっと読む)


【課題】異種金属間の接合における炭素拡散によるクリープ強度低下防止、熱膨張率差による応力の緩和の方法を提供する。
【解決手段】異種金属間の接続であって、接合部の逆形を複製するように設計されたモールド(成形型)を提供するステップと、低合金フェライト鋼組成物微粒化粉末をモールドの第1部分に導入するステップと、一連の微粒化粉末をモールドの第2部分に徐々に(段階的に)導入してフェライト鋼組成物とオーステナイトステンレス鋼組成物との間の移行領域を形成するステップと、オーステナイトステンレス鋼組成物微粒化粉末をモールドの第3部分に導入するステップとを含む。この方法は、高温、高圧の不活性ガス雰囲気中で微粒化粉末を固めて溶融させ、接合部を形成するステップをさらに含む。 (もっと読む)


【課題】低コストで、に第三元素を添加しない、低酸素MoCrターゲット材を製造する方法およびMoCrターゲット材を提供すること。
【解決手段】Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材の製造方法であって、(1)Mo焼結体を平均粒径20〜500μmに粉砕してMo粉末を作製する工程と、(2)該Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程と、(3)平均粒径20〜500μmのCr原料粉末を準備する工程と、(4)前記還元処理Mo粉末と前記Cr原料粉末とを混合した混合粉末を作製する工程と、(5)該混合粉末を加圧焼結してMoCr焼結体を作製する工程とを有するMoCrターゲット材の製造方法。 (もっと読む)


【課題】成膜の品質を向上させるルテニウム合金スパッタリングターゲットを提供する。
【解決手段】ルテニウム粉末とルテニウムよりも酸化力が強い金属粉末との混合粉末を焼結して得られるルテニウム合金焼結体ターゲットであって、ガス成分を除くターゲットの純度が99.95wt%以上であり、ルテニウムよりも酸化物を作りやすい金属を5at%〜60at%含有し、相対密度が99%以上、不純物である酸素含有量が1000ppm以下であることを特徴とするルテニウム合金スパッタリングターゲットであり、ターゲット中に存在する酸素を低減させて、スパッタ時のアーキングやパーティクルの発生を少なくし、焼結密度を向上させてターゲットの強度を高め、さらにSi半導体へ微量添加されているB及びPの組成変動を防止するために、ターゲット中のB及びP不純物の量を厳しく制限する。 (もっと読む)


【課題】 太陽電池の光吸収薄膜層を製造するための低酸素Cu−Ga系合金粉末、およびスパッタリングターゲット材の製造方法を提供する。
【解決手段】 原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が200ppm以下としたCu−Ga系合金粉末。また、原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が250ppm未満、かつ結晶粒径が10μmを超え、100μm以下としたCu−Ga系合金スパッタリングターゲット材。さらには、上記Cu−Ga系合金粉末を原料とし、これを400〜850℃の温度で固化成形するCu−Ga系スパッタリングターゲット材の製造方法。 (もっと読む)


【課題】複数のターゲットを用いることなく、炭素含有量の多いFePtC系薄膜を単独で形成できるFePt−C系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】Fe、PtおよびCを含有するFePt−C系スパッタリングターゲットであって、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金相と、C相とが互いに分散した構造を有するようにし、ターゲット全体に対するCの含有量を21〜70at%にする。
また、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金粉末にC粉末を添加し、酸素の存在する雰囲気下で混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形する。 (もっと読む)


1 - 20 / 219