説明

Fターム[4K058CA07]の内容

金属の電解製造 (5,509) | 溶液電解(電解精製、電解採取) (831) | 電解液 (585) | 主成分 (314) | アルカリ (34)

Fターム[4K058CA07]に分類される特許

1 - 20 / 34


【課題】比較的弱い酸及びアルカリを用いて、酸化物半導体に含まれる金属を回収することが可能な技術を提供することを目的とする。
【解決手段】金属回収方法は、破砕ガラス7の配線金属を、第1電解液14aを用いて溶解する電解酸化を行う工程と、その後の破砕ガラス7のITOを、第2電解液14bを用いて還元してIn,Snを生成する電解還元を行う工程とを備える。そして、金属回収方法は、その後の破砕ガラス7を第3電解液14cに浸漬させて、In,Snを第3電解液14cに溶解した後、当該第3電解液14cからIn,Snを回収する工程を備える。 (もっと読む)


【課題】砒素を含有する錫電解採取液から錫を安全に、かつ、効率的に回収する方法を提供する。
【解決手段】少なくとも砒素を含有する錫電解採取液を、水素が発生しない条件で、好ましくは10g/L以上の錫濃度にて電解処理する砒素含有溶液からの錫の回収方法であり、好ましくは電解後液を廃液処理する際に、錫濃度が10g/L以上で電解処理を止めて、この電解処理で得られた電解後液について、ORP値を−200mV(vs AgCl/Ag)以上に維持するか、又は、ORP値が−200mVより低い場合は、酸化剤を添加し、−200mV以上に調整した後、pHを低下させることで、少なくとも一部の砒素を電解後液中に溶存させながら錫をSn中和物の形態に変化させる処理を含む方法である。 (もっと読む)


【課題】ガリウムイオンを含む溶液を電解して金属ガリウムを得る金属ガリウムの電解採取方法に関し、電解時間をより一層短縮する方法を提供する。
【解決手段】ガリウムイオンを含有する溶液を電解液として電解することにより、陰極にガリウムを電着させて金属ガリウムを得るガリウムの電解採取方法において、電解液としてのガリウムイオン含有溶液の温度を、冷却機器などを使用して、ガリウムの融点(29.8℃)未満に制御しつつ電解を行うことで、電解時間を大幅に短縮することができる。 (もっと読む)


【課題】錫アノードを用いた電解精製による電気錫の製造方法において、次第に電解液が変色し、それに伴い錫メタルの電着状態が悪化するという問題を解決する。
【解決手段】錫アノードを用いた電解精製による電気錫の製造方法であって、電解液の酸化還元電位(銀/塩化銀電極基準)を−800mV以上に制御しながら電解精製を実施することを含む電気錫の製造方法。 (もっと読む)


【課題】電解還元槽中で分散安定性に優れかつデンドライト化が抑制された、一次粒子の粒子径が1〜150nmの銅微粒子の製造方法を提供する。
【解決手段】少なくとも、銅イオン、アルカリ金属イオン、及び有機物分散媒が溶解している還元反応水溶液が収容され、かつ作用電極であるカソードと補助電極であるアノードを備えた電解還元槽装置を用いて、該カソードとしてカソード外表面の移動速度が5〜250mm/秒に制御された可動電極を用い、銅イオンの電解還元反応により一次粒子の粒子径が1〜150nmの範囲にある銅微粒子をカソード表面近傍に析出させることを特徴とする、銅微粒子の製造方法。 (もっと読む)


【課題】アミン系剥離液使用により蓄積するレジスト樹脂、炭酸アンモニウム塩、溶解金属を連続的に除去し、剥離液の再生装置、方法を提供する。
【解決手段】剥離装置1内で循環する使用済み剥離液2を配管経路3を通じて電解槽4の陽極ドラム5およびカチオン交換膜6間に導入する。一方で電解槽4には陽極ドラム5に対向する陰極7が、カチオン交換膜6を介して設置されており、陰極7は再生済みの剥離液8によって満たされている。陽極と陰極間の電気伝導は陽イオンの移動による電気伝導が可能となっているので電気的には隔離されていない。陽極ドラム5及び陰極には、電気給手段として電源9が接続されている。陰極及び陽極間に直流電流を通電することで、使用済み剥離液に含まれるレジスト樹脂を陽極ドラム5の表面上に電着でき、剥離液中からレジスト樹脂を除去できる。 (もっと読む)


【課題】 酸化インジウム及び酸化錫を含有する塊状物から容易に高純度インジウムと酸化錫を回収することを特徴とするインジウム及び錫の回収方法。
【解決手段】酸化インジウム、酸化錫を含有物を塩酸で浸出する浸出工程と、
得られた浸出液にアルカリを加えて、pH=14以上になるように調整し、インジウムは水酸化物として析出させて回収し、錫はアルカリ中和後液として粗分離する工程と、
水酸化インジウムを塩酸浸出した後、インジウム板置換にて錫浄液を行う工程と、から成る高純度のインジウム、及び高純度錫の回収方法。 (もっと読む)


【課題】化学的に安定であり溶解が溶解ではない白金を、電解法により効率的に溶解させる方法を提供する。
【解決手段】本発明は、電解液中で白金を電極として電解することで白金を溶出させ電解溶出方法であって、前記電解液は、錯化剤として3〜10重量%のモノエタノールアミンを含む、5〜15重量%の水酸化ナトリウム溶液であり、電解条件として、液温25〜60℃、電流密度100〜140A/dmの交流電流を印加して前記白金電極を溶出させる方法である。 (もっと読む)


水酸化ナトリウムおよび水から水素を産生する方法を開示する。当該方法は、ナトリウムイオン分離器中で第1水性水酸化ナトリウム流れからナトリウムを分離し、ナトリウムイオン分離器中で産生されたナトリウムをナトリウム反応器に供給し、ナトリウム反応器中のナトリウムを水と反応させ、そして第2水性水酸化ナトリウム流れおよび水素を産生することを含む。当該方法はまた、第2水性水酸化ナトリウム流れを第1水性水酸化ナトリウム流れと組み合わせることにより、第2水性水酸化ナトリウム流れを再利用することも含み得る。水素を産生するシステムも開示する。 (もっと読む)


【課題】基材上に配置して乾燥後、比較的低温で焼成しても導電性に優れ、不純物の少ない導電部材を得ることが可能な分散性の高い銅微粒子分散水溶液を提供する。
【解決手段】一次粒子の平均粒径1〜150nmの銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に分散されている、銅微粒子分散水溶液の製造方法であって、(i)銅イオンを分散剤の存在下で、pH調整剤によりpH9.2以上に調整したアンモニア水溶液中でアンモニアとの反応により、水溶性の銅アンミン錯体を得る工程(工程1)、(ii)前記工程1で得られた銅アンミン錯体を含む還元反応水溶液中において、電解還元反応により、少なくとも表面の一部が分散剤で覆われた銅微粒子を形成する工程(工程2)、を含み、前記還元反応の系において、銅、炭素原子、水素原子、酸素原子、及び窒素原子以外の原子を含む化合物を含まないことを特徴とする、銅微粒子分散水溶液の製造方法。 (もっと読む)


【課題】液相で還元反応を行うことにより、デンドライト化が抑制されたCu−P合金微粒子、及びCu−Sn−P合金微粒子を製造する方法を提供する。
【解決手段】(i)少なくともシアン化第一銅、水溶性リン酸塩、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、又は
(ii)少なくともリン酸第二銅、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、
を含有する、pHが9〜14の還元反応溶液において、還元反応により銅−リンからなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】有害物質を極力低減させるとともに、成膜時のパーティクルの発生数が少なく、膜厚分布が均一であり、かつ4N(99.99%)以上の純度を持ち、半導体メモリーのキャパシタ用電極材を形成する際に好適なスパッタリングターゲット製造用高純度Ru粉末、該高純度Ru粉末を焼結して得たスパッタリングターゲット及び該ターゲットをスパッタリングして得た薄膜並びに前記高純度Ru粉末の製造方法を提供する。
【解決手段】Na、Kなどのアルカリ金属元素の各含有量が10wtppm以下、Alの含有量が1〜50wtppmであることを特徴とする高純度Ru粉末、及び純度3N(99.9%)以下のRu原料をアノードとし、溶液中で電解して精製する、同高純度Ru粉末の製造方法。 (もっと読む)


【課題】 インジウムイオンを含有する水溶液から金属インジウムを、電解採取により経済的に製造する。
【解決手段】 電解槽10内を陽イオン交換膜11により陽極室12と陰極室13とに仕切る。不溶性の陽極14を配置した陽極室12の電解液をアルカリ金属の水酸化物水溶液とし、陰極室13の電解液をインジウムイオンを含有する水溶液として、陰極室13おいて金属インジウムを析出させる。安価な陽極14の使用が可能となる。電解液のpH調整が不要となる。陽極側での塩素ガスの発生がない。インジウムの電解採取に要する電圧が下がり、電流効率が上がる。 (もっと読む)


本発明は、以下の操作工程を含む、脱硫された鉛パステルから出発した、金属鉛を製造するための電気分解的方法に関する。
a)脱硫したパステルを、塩化アンモニウムを含む溶液と接触させることにより脱硫したパステルを溶脱し、溶脱液体を形成させ及びCO2ガスを発生させる工程、
b)第一の固形物残渣と第一の浄化された溶脱液体を、工程a)からの溶脱液体から分離する工程、
c)塩化アンモニウム及び過酸化水素を含む溶液と接触させることにより、工程b)において分離された固形物残渣を溶脱する工程、
d)第2の固形物残渣及び第2の浄化された溶脱液体を、工程c)からの溶脱液体から分離する工程、
e)工程b)からの第1の浄化された溶脱液体と、工程d)からの第2の浄化された溶脱液体とを合わせて、単一の溶液を形成する工程、
f)工程e)を離れた溶液を、50〜10,000A/m2の範囲の電流密度を用いて、フローセル中で電気分解させ、前記電気分解が鉛スポンジをもたらす工程。本発明は、パステルの相対的な脱硫方法にも関する。 (もっと読む)


【課題】錫含有塩基性溶液から安価且つ効率的に錫を電解採取することができる、錫の電解採取方法を提供する。
【解決手段】不純物を含む錫含有塩基性溶液を電解液として使用して錫を電解採取する方法において、少なくとも表面がチタンからなるカソードを使用して、電解によりカソード上に錫を厚さ0.3〜0.5mm程度に析出させた後、カソード上に析出したシート状の錫を剥ぎ取って錫板として回収し、この錫板をプレスして表面の膨れをつぶした後に種板として使用して、電解により種板上に錫を析出させる。 (もっと読む)


【課題】不純物としてSbを含む錫含有塩基性溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】 不純物としてアンチモンを含む錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてアンチモンより卑な金属を添加し、70℃以上の温度で緩やかに攪拌して置換反応によりアンチモンを沈澱させ、濾過によりアンチモンを除去した後、得られた溶液を電解液として使用して電解採取により錫を回収する。 (もっと読む)


【課題】電着錫中のFe品位を低下させることができるとともに、電解後の液を再使用することができる、錫の電解採取方法を提供する。
【解決手段】不純物を含む錫含有塩基性溶液を電解液として錫を電解採取する際に、少なくとも表面部分がニッケルまたはニッケル基合金からなるアノードを使用する。少なくとも表面部分がニッケルまたはニッケル基合金からなるアノードとしては、全体がニッケルまたはニッケル基合金からなるアノードを使用してもよいし、鋼板や銅板などの導電性素材をニッケル鍍金したアノードを使用してもよい。 (もっと読む)


【課題】錫の他に銅などを含む錫含有物から安価且つ効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】錫と銅を含む錫含有物の粉末を、苛性ソーダ水溶液に添加して、この苛性ソーダ水溶液に酸素を吹き込みながら撹拌して、酸化浸出により錫を含む浸出液を得た後、この浸出液を電解液として使用して電解採取により錫を回収する。錫と銅を含む錫含有物の粉末の粒径が100μm以下であるのが好ましい。また、浸出が終了した際の苛性ソーダ水溶液中のNaOH濃度が40〜150g/Lであるのが好ましく、浸出の際の苛性ソーダ水溶液の温度が70〜100℃であるのが好ましい。さらに、電解採取前に浸出液に錫を添加して浸出液中の鉛を除去するのが好ましい。 (もっと読む)


【課題】金属粉をそのまま原料として電解に供することができる金属粉の製造方法を提供せんとする。
【解決手段】電解液に不溶性であって、原料金属粉の金属イオンが通過し得る材料からなる原料収容体内に原料金属粉を収納し、当該原料収容体内に保持された原料金属粉を、原料収容体越しに、すなわち原料収容体を介してアノード電極と接触させた状態で電解することとした。 (もっと読む)


【課題】錫の他に鉛などを含む錫含有物から安価且つ効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】錫と鉛を含む合金塊などの錫含有物からアトマイズや粉砕などによって得られた粉末または粒状物を、苛性ソーダ水溶液に添加して、この苛性ソーダ水溶液に酸素を吹き込みながら撹拌して、酸化浸出により錫を含む浸出液を得た後、この浸出液を電解液として使用して電解採取により錫を回収する。酸化浸出が終了した際の苛性ソーダ水溶液中のNaOH濃度は0.1〜150g/Lであるのが好ましく、4〜80g/Lであるのがさらに好ましく、30〜80g/Lであるのが最も好ましい。また、浸出の際の苛性ソーダ水溶液の温度は50〜100℃であるのが好ましく、電解採取の際の電解液の温度は50〜100℃であるのが好ましい。 (もっと読む)


1 - 20 / 34