説明

Fターム[4K058EB13]の内容

金属の電解製造 (5,509) | 陰極 (472) | 材質 (304) | 金属、合金 (257)

Fターム[4K058EB13]の下位に属するFターム

ステンレス (87)
Al (17)
Ti (60)

Fターム[4K058EB13]に分類される特許

61 - 80 / 93


【課題】電解法により製造される銅の種板において、その電着面が垂直性良好に形成され、製品となる電気銅の品質及び生産性を向上させることができる銅の種板及びその製造方法を提供することにある。
【解決手段】電解槽内に装入され、その電着面4に銅が電着させられる銅の種板10であって、前記種板10は、前記電着面4を有する種板本体1を備えており、前記種板本体1は、電解法によって製造され、前記種板本体1の板厚tが、1.4mm以上1.8mm以下とされており、前記電着面4の垂直性が、0mm/m2以上7mm/m2以下とされていることを特徴とする。 (もっと読む)


【課題】少ないエネルギー消費量で効率的に不純物含有ナトリウムからナトリウムを製造することができるナトリウムの製造方法およびナトリウム製造装置を提供すること。
【解決手段】不純物含有ナトリウムを陽極とし、かつ低融点の溶融塩電解液を電解質として電気分解を行う。陽極では、不純物含有ナトリウムに含まれるナトリウムのみがナトリウムイオンとなって溶融塩電解液に溶出し、その他の不純物は不純物含有ナトリウム中に残存する。一方、陰極では、溶融塩電解液に含まれるナトリウム(ナトリウムイオン)が陰極の表面に析出する。溶融塩電解液は、アルミニウムのハロゲン化物およびアルカリ金属のハロゲン化物からなり、そのモル比が50:50〜52:48の範囲内であるものを使用する。 (もっと読む)


【課題】溶融塩電解精製装置の液体金属電極の界面を本来の液体金属陰極組成に定常的に維持し、陰極として使用する液体金属量を増大させることなく効率的に大量のU及びTRUを回収することを目的とする。
【解決手段】電気炉内に設置され溶融塩が収容された電解槽と、使用済み核燃料が装荷された陽極容器と、液体金属陰極が収容された液体金属ルツボと、を有する溶融塩電解精製装置において、前記液体金属陰極の界面に発生する固体析出物を液体金属陰極底部に圧縮する昇降可能な圧縮装置を備える。 (もっと読む)


【課題】粒径が小さく、粒度分布が比較的狭く、分散安定性に優れかつデンドロイト化が抑制された銅微粒子を、簡便な方法でかつ大量に生成することのできる金属微粒子の製造方法を提供する。
【解決手段】少なくとも、銅イオン、ハロゲンイオン、及び有機物分散媒が溶解している還元反応溶液において、銅イオンの還元反応により粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする、銅微粒子の製造方法 (もっと読む)


本発明による金属ナノ粒子コロイド溶液の製造方法は、金属塩が溶解している電解水溶液中に一対の金属電極を対向配置した後、攪拌手段により前記電解水溶液を攪拌しながら前記2つの電極に電流を印加することで、溶液中の金属イオンが還元されて金属ナノ粒子が析出するようにして調製される金属ナノ粒子のコロイド溶液の製造方法において、前記電解水溶液中にポリソルベートを添加して、電解水溶液から析出する金属ナノ粒子の外面をコーティングすることにより、金属ナノ粒子の凝集を防止することを特徴とする。
(もっと読む)


【課題】 金属酸化物を原料として溶融塩電解により効率良く合金インゴットを製造する方法を提供する。
【解決手段】 溶融塩電解による合金インゴットの製造方法であって、合金の母相を構成する金属および合金成分を構成する金属のそれぞれの酸化物を溶融塩に溶解させ、溶融塩に通電して上記酸化物を溶融塩電解することを特徴とする合金インゴットの製造方法。 (もっと読む)


【課題】高融点金属や希土類金属などの電析が容易に可能な電析方法を提供する。
【解決手段】一般式(I)で表される四級アンモニウムハライド溶融塩、および/または、一般式(II)で表されるピロリジニウムハライド溶融塩(式中、R〜Rは同一または異なって置換基を有していてもよい炭素数1〜12のアルキル基または炭素数5〜7のシクロアルキル基、Xはカウンターイオンとしてのハライドアニオンを示す)を100℃〜200℃の温度で浴として用いる。


(もっと読む)


【課題】塩化第1銅を含む酸性水溶液から電着銅を高電流効率で回収することができる電解採取方法を提供する。
【解決手段】陰極室7、陽極室8、及び前記両室を分離する隔膜9から構成される電解槽を用いる隔膜電解法により、該陰極室7に塩化第1銅を含む酸性水溶液3を給液し、一方該陽極室8に塩化鉄水溶液4を給液して、銅を電解採取する方法において、前記陰極室7の液面レベルを、前記陽極室8の液面レベルに対し、陽極室深さの1〜3.5%の距離を隔てた高い位置に調整するとともに、前記塩化第1銅を含む酸性水溶液の酸化還元電位(Ag/AgCl電極規準)を200〜290mVに調整することにより、陰極室7からの廃液の酸化還元電位(Ag/AgCl電極規準)を300mV以下に制御することを特徴とする。 (もっと読む)


【課題】生成された微粒子の成長及び凝集を抑制したプラズマ誘起電解による微粒子製造方法およびその装置を提供する。
【解決手段】溶融塩をプラズマ誘起電解することによって微粒子を製造する方法であって、回転している実質的に平坦な面上に保持された溶融塩浴表面に対しプラズマ照射を行うことによって微粒子を生成させ、かつ、遠心力により生成された微粒子を溶融塩浴外へ移動させることを特徴とする前記製造方法およびその装置を提供する。 (もっと読む)


【課題】金属製錬や産業廃棄物処理工程より発生する炭酸鉛、酸化鉛、水酸化鉛、硫酸鉛等の鉛含有物から効率よく、高純度な金属鉛を回収する方法を提供する。
【解決手段】鉛含有物を硝酸溶液にてpH1〜3、反応時間1時間以上の条件にて浸出し、濾過後、濾液中の鉛より貴な金属の不純物を除去するため、金属鉛を用いてpH2〜3の範囲にて置換反応を行い、硝酸鉛溶液から電解採取法により、アノードに二酸化鉛、カソードに金属鉛を析出させた後、アノードより二酸化鉛を剥離回収して、還元剤とともに溶融還元して金属鉛にした後、炉冷した後苛性ソーダを添加して微量不純物を取り除き、鋳造して電気鉛を得、カソードより回収した電着鉛も溶融後、同様に微量不純物を取り除き、鋳造して電気鉛を得る。 (もっと読む)


鉄の水素過電圧より高い水素過電圧を有するカソードを備え、そして約2未満のpHを有するカソード液を含む、カソード区画と、アノードを備え、そしてアノード液を含むアノード区画と、陰イオンの通過を可能にするセパレーターと、を含む電解槽中で鉄分の豊富な金属塩化物の溶液中で電解すること、(この電解ステップは、電解槽の非アノード区画中で鉄分の豊富な金属塩化物の溶液を循環させること、それによって鉄をカソードで電着させること、および塩素ガスをアノードで発生させること、そして鉄を使い果たした溶液を残すこと、を含む)を含む鉄分の豊富な金属塩化物の溶液からの金属鉄および塩素ガスの同時回収のための電気化学的方法。鉄分の豊富な金属塩化物の溶液は、炭塩素化の廃棄物、使用済みの酸の浸出液または酸洗い液に由来することができる。
(もっと読む)


【課題】キャパシター用タンタルまたはニオブ粉末の製造方法を提供する。
【解決手段】陽極、陰極及び溶融塩を含む電解還元反応器におけるキャパシター用タンタル(Ta)またはニオブ(Nb)粉末の製造方法において、アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物と、アルカリ金属酸化物からなる溶融塩中、アルカリ金属酸化物を陰極で1次電解還元し、電解還元されたアルカリ金属により五酸化タンタル(Ta2O5)または五酸化ニオブ(Nb2O5)を部分的に還元してTa2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物を得る工程、及び前記アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物を陰極で1次電解還元して、Ta2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物と2次還元反応を進行してタンタルまたはニオブ粉末を得る工程を含む。 (もっと読む)


【課題】少ない労力とエネルギーを用い塩化鉄液中のインジウムおよび/または錫を回収するとともに塩化鉄溶液を再利用することができるインジウムおよび/または錫を含有する塩化鉄溶液の処理方法および処理装置を提供する。
【解決手段】インジウムおよび/または錫を含有する塩化鉄溶液の再生処理方法であって、前記塩化鉄溶液中の塩化第二鉄を塩化第一鉄に還元して第1溶液を作製する還元工程と、前記第1溶液中のインジウムおよび/または錫を分離して第2溶液を作製する分離工程と、前記第2溶液中の塩化第一鉄を塩化第二鉄に酸化する酸化工程を含む塩化鉄溶液の再生処理方法と、該方法を行なう再生処理装置を提供する。 (もっと読む)


【課題】還元された金属がデンドライト(樹枝)状に成長することなく、粒子を大量に製造する場合に、粒子が肥大化することがなく、粒状でナノサイズの金属微粒子を効率よく製造することができる金属ナノ粒子の製造方法を提供する。
【解決手段】有機物分散媒を含む導電性水溶液中で、製造対象の金属からなる陽極と、互いに電気的に絶縁された白金針状電極からなる陰極を通電して、金属微粒子を製造する、金属微粒子の製造方法である。白金針状電極は、例えば、最大長さが1μm以下となるように互いに絶縁された複数の白金突起である。
(もっと読む)


【課題】混合溶融塩を用いた電気化学的還元法により、二酸化チタンから低次チタン酸化物を経て金属チタンを得る。
【解決手段】原料の二酸化チタンを還元用陰極12として電析用陰極13,陽極14と共に塩化カルシウム,アルカリ金属塩化物の混合溶融塩浴11に浸漬する。二酸化チタンが低次チタン酸化物に還元される電位に陰極12を維持し、低次チタン酸化物を混合溶融塩浴11にチタンイオンとして溶解させる。混合溶融塩浴11を拡散したチタンイオンは、金属チタンの析出電位に維持された陰極13上で金属チタンとして析出する。 (もっと読む)


【課題】金属酸化物を原料として金属インゴットを効率良く直接製造する溶融塩電解装置およびこの装置を用いて金属インゴットを製造する方法を提供する。
【解決手段】 金属酸化物を溶融塩浴に溶解して電解を行う金属の溶融塩電解装置であって、溶融塩電解槽10は独立した陽極室11と陰極室12とからなり、陽極室11と陰極室12との間に溶融塩ブリッジ13を設けたことを特徴とする。また、この装置を用いた金属の溶融塩電解方法。 (もっと読む)


【課題】金属の電解採取において、陽極及び陰極のショートを防ぐために両電極を電解槽の所定位置に設置した後に外部からスペーサーを電極間に挿入する方法では、電極が損傷をうけることがある。両電極のショートを防ぎかつ使用時の電極損傷が防止できる電極およびそれを用いた電解槽を提供する。
【解決手段】陽極13の表面にスペーサー19を固着する。スペーサーが陽極と一体化するため、スペーサーの電解槽12内への配置が容易で、かつ陽極13と陰極14間のショートが防止される。 (もっと読む)


【課題】TiCl4の還元反応を効率よく行わせ、且つ工業的規模で、安定した操業が可能なTiの製造方法、およびそれに用いられる製造装置を提供する。
【解決手段】Caが溶解したCaCl2含有溶融塩中のCaにTiCl4を反応させて前記溶融塩中にTi粒を生成させる還元工程と、生成されたTi粒を溶融塩から分離する分離工程と、Ca濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、前記電解工程で主電解槽5を用いてCa濃度を高めた溶融塩を、Ca供給源を有する調整槽6に導入して該Ca供給源に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いる。Ca供給源として溶融Ca−Mg合金を用いれば、Caの補充を容易に行える。このTiの製造方法は、本発明の製造装置により容易に実施できる。 (もっと読む)


【課題】希少元素FPあるいは希少元素の電解析出物を、水素製造用の触媒電極として利用し、アルカリ水溶液や海水等の電解液から水素を効率的に能率よく製造する技術。
【解決手段】本発明に係る電解水素製造システムは、アルカリ水溶液あるいは海水等の電解液を陽極および陰極間で電気分解して水素を発生させ、製造するものである。
この電解水素製造システム30において、陰極32は、希少元素FPであるルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)およびテクネチウム(Tc)、ならびに希少元素のレニウム(Re)の希少元素を少なくとも1種類以上析出させた電解析出電極であり、この電解析出電極を触媒電極として陰極に用いたものである。 (もっと読む)


【課題】β”−Al構造を有する固体カリウムイオン伝導体、その製造方法、及び、該カリウムイオン伝導体を用いることによるカリウムの製造方法の提供。
【解決手段】多結晶質アルカリ金属β”−Alモールディングをカリウムとアルミニウムを含有している酸化物粉末に埋め込み、少なくとも100℃/Hrで少なくとも1100℃に加熱し、更に少なくとも1300℃に加熱し、この温度で少なくとも1時間維持した後に冷却することによって、固体カリウムイオン伝導体を得る。カリウム金属は、カリウムアマルガムを原料とし、カリウムアマルガムを含有するアノード16と固体カリウムイオン伝導体からなる固体電解質管1の内部に充填された液体カリウム金属からなるカソード17を用いて電気分解することにより生成し、パラフィンが充填された不活性雰囲気にある容器20中に導かれ、球体23の形状で固化させらることによって得られる。 (もっと読む)


61 - 80 / 93