説明

Fターム[4K058EB13]の内容

金属の電解製造 (5,509) | 陰極 (472) | 材質 (304) | 金属、合金 (257)

Fターム[4K058EB13]の下位に属するFターム

ステンレス (87)
Al (17)
Ti (60)

Fターム[4K058EB13]に分類される特許

21 - 40 / 93


【課題】デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法を提供する。
【解決手段】電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】電解液中の膠の濃度管理を良好に行うことで品質の良好な電気銅を作製できる銅の電解精製装置及びそれを用いた銅の電解精製方法を提供する。
【解決手段】銅の電解精製装置10は、銅の電解槽17と、電解液供給部11と、膠の水溶液を供給する膠溶解槽13と、膠濃度検出部と、膠の水溶液の供給量を制御する膠供給量制御部とを備える。膠の濃度の算出に当たっては、銅の電解精製装置に循環利用されている電解液を電気分解して測定したカソード電位と、この液に所定量の膠を新たに添加して電気分解して測定したカソード電位との差を算出し、カソード電位差と膠の添加濃度との検量線を作製しておく。膠濃度検出部は、電解槽に供給する前の膠が添加された電解液で測定したカソード電位と、電解槽から排出された電解液で測定したカソード電位との差から、前記検量線に基づき電解液中の膠の濃度を算出する。 (もっと読む)


【課題】 煩雑なカソード板の前処理を必要とせず、肌別れを防止できる電解採取カソードの割れ防止方法を提供する。
【解決手段】 金属の電解採取において、金属を含む酸性の電解液が循環されている電解槽にカソードを装入し、電解槽にカソードを装入してから通電を開始するまで静置させ、前記カソードを静置させる静置時間Tが、電解槽の容量Aと、電解槽に循環させる電解液の流量Bとの関係において、BT/A≧0.03を満たすように静置させる。 (もっと読む)


【課題】カソード板の歪により生じるカソード板とアノード板との接触を防ぎ、且つ切断時のプッシャー噛みこみの発生及びそれに伴うサイズ不良品の発生を抑えるためのカソードスペーサーを提供する。
【解決手段】カソードスペーサー2は、枠断面がV字状に形成され、且つスペーサー2に嵌込まれたカソード板1のカソード板面1cと、スペーサー2の枠面との角度が10〜80°になるように形成されている。また、スペーサー2は、カソード板1の両側1a又は底辺部1b若しくはその両方を、その端部からカソード板1の高さ方向又は幅方向の全長に対して0.5〜5%が、スペーサー2で遮蔽されるように形成されている。 (もっと読む)


【課題】最も好ましくは200℃よりも低い低温アルカリ金属電解プロセスによるアルカリ金属を生産する方法を提供する。
【解決手段】アルカリ金属ハロゲン化物と、(1)イミダゾリウム塩、N−アルキルピリジニウム塩、テトラアルキルアンモニウム塩およびテトラアルキルホスホニウム塩のような窒素またはリン化合物、および任意選択でIIIA族ハロゲン化物、IB族ハロゲン化物、VIII族ハロゲン化物またはこれらの2種以上の組合せ、あるいは(2)IIIA族ハロゲン化物、VB族ハロゲン化物、またはIIIA族ハロゲン化物とVB族ハロゲン化物の組合せ、あるいは(3)水を含むコエレクトロライトとを含む電解液を使用する。 (もっと読む)


【課題】停電による電気銅の剥ぎ取り不良を抑制でき、電着銅の剥ぎ取り問題の発生頻度が特に高い電解槽中のカソード電極板に対して個別に対策を施すことが可能な銅の電解精製方法を提供する。
【解決手段】(a)電解液を収容する複数の電解槽1中にカソード電極板13及び粗銅性のアノード電極板12を浸漬し、電気分解によりカソード電極板13の表面に電着銅6を析出させる工程と、(b)電解槽1への電力供給を一定期間停止させる工程と、(c)アノード電極板12の電解液100への浸漬深さを変更する工程と、(d)電解槽1への電力供給を再開し、電着銅6の表面に再電着銅7を析出させる工程とを含む銅の電解精製方法である。 (もっと読む)


【課題】化学的に安定であり溶解が溶解ではない白金を、電解法により効率的に溶解させる方法を提供する。
【解決手段】本発明は、電解液中で白金を電極として電解することで白金を溶出させ電解溶出方法であって、前記電解液は、錯化剤として3〜10重量%のモノエタノールアミンを含む、5〜15重量%の水酸化ナトリウム溶液であり、電解条件として、液温25〜60℃、電流密度100〜140A/dmの交流電流を印加して前記白金電極を溶出させる方法である。 (もっと読む)


【課題】金属インジウム含有合金から、高度に精製された金属インジウムを長期間に亘って、高回収率で製造する方法を提供する。
【解決手段】金属インジウム含有合金の陽極1、陰極2に金属インジウムを使用し、電解質3として、塩化インジウムを主成分とする塩化インジウム−塩化亜鉛溶融塩を使用し、溶融塩電解により、陽極からインジウムを陽イオンとして溶出させ、陰極上に金属インジウムを電析する金属インジウムの製造方法において、塩化インジウム−塩化亜鉛溶融塩中の塩化インジウム含有量が68重量%以上、溶融塩の水分含有量が0.5重量%以下であることを特徴とする金属インジウムの製造方法。 (もっと読む)


【課題】四塩化珪素の亜鉛還元法により副生する塩化亜鉛含有物から、高効率に亜鉛を回収する方法を提供する。
【解決手段】亜鉛の回収方法であって、四塩化珪素の亜鉛還元法により副生する塩化亜鉛含有物を、上部に生成ガス捕集部を有する溶融塩電解槽中で溶融塩電解することにより、溶融塩電解槽上部から塩素ガスを取り出すとともに溶融塩電解槽下部から溶融亜鉛を取り出す工程と、溶融塩電解槽内の残留融液を冷却した後、塩酸水溶液を加えて残留物水溶液を作製する工程と、上部に生成ガス捕集部を有する水溶液電解槽中で前記残留物水溶液を水溶液電解することにより、水溶液電解槽上部から塩素ガスを取り出すとともに電極上に亜鉛を析出させる工程とを含むことを特徴とする亜鉛の回収方法である。 (もっと読む)


【課題】高価で寿命の短い剥離液を使用せず、剥離後のエッチングもすることなく、連続して効率良く、ニッケルめっきが施された銅又は銅合金屑からニッケルを剥離して、ニッケルめっきが剥離された銅又は銅合金屑を銅又は銅合金の製造用原料として使用し、しかも剥離液の廃液処理の問題も解消し、その廃液からニッケルも回収する。
【解決手段】剥離液Eとして硫酸溶液が貯留された第一電解槽2中に、表面にニッケルめっきが施された銅又は銅合金屑Cを浸漬することにより、Ni+HSO→NiSO+Hなる化学反応によりニッケルめっきを剥離し、剥離されたニッケルを含有する使用済み剥離液を圧力透析装置3にて、濃縮された硫酸ニッケル溶液Mと濃縮された硫酸溶液Rとに分離し、濃縮された硫酸ニッケル溶液Mを第二電解槽4中にて電解することによりニッケルDを回収し、濃縮された硫酸溶液Rは第一電解槽2に戻す。 (もっと読む)


【課題】電着銅の表面に付着する薄膜(銅化合物層)を除去することが可能な銅の電解精製方法を提供する。
【解決手段】電解液を収容する電解槽中に第1電極及び粗銅製の第2電極を浸漬させて銅電解精製を行う方法であって、第1電極13をカソードとし、第2電極12をアノードとする第1電流を第1電極13及び第2電極12の間に流し、第1電極13の表面に電着銅層6を析出させる工程(S1)と、第1電流を停止させる工程(S2)と、停止後、所定時間経過後に、第1電極13をアノードとし、第2電極12をカソードとする第2電流を第1電極13及び第2電極12の間に流し、電着銅層6上に生成される銅化合物層を除去する工程(S3)と、第1電極13をカソードとし、第2電極12をアノードとする第3電流を第1電極13及び第2電極12の間に流し、電着銅層6の表面に再電着銅層7を電着させる工程(S4)とを含む銅の電解精製方法である。 (もっと読む)


【課題】 繰り返し使用に耐えることができ、電着銅が十分に電着せず剥離してしまう自然剥離を抑制する銅種板電解用の母板を提供する。
【解決手段】 主面が略四角形状を有する銅種板電解用の母板において、上記主面の一の辺及び該一の辺に略直交する他の辺のそれぞれを3領域に分割してなる9領域のそれぞれの領域における表面粗さを平均した9点平均粗さ(Rz)が3.0μm以上であることを特徴とする。 (もっと読む)


【課題】精製対象となる金属元素または半金属元素の融点よりも電解温度を低くすることができ、かつ、精製物の樹枝状成長や精製物への電解浴の巻き込みを抑制することができる、精製された金属又は半金属の製造方法を提供する。
【解決手段】電解槽内に設置された電解浴中において、金属元素又は半金属元素、及び、不純物を含む材料を陽極として、陽極に含まれる金属元素又は半金属元素と同種の金属元素又は半金属元素と、金属元素又は半金属元素との固溶体を実質的に作らない溶媒金属とを含有し、金属元素又は半金属元素の融点よりも低い完全凝固温度を有する合金を陰極として作用させ、合金が液相となることができる電解温度で電解を行うことにより、陽極中の金属元素又は半金属元素を陰極の合金中に移動させる電解工程と、その後、取出工程と、完全凝固温度より高くかつ電解温度より低い温度での析出工程と、回収工程とを備える製造方法。 (もっと読む)


固体金属化合物等の固体原料の還元のための方法において、電解装置の中で、原料の一部分が、2つ以上の電解槽(50、60、70、80)のそれぞれの中に配置される。溶融塩は、各槽の中に電解質として提供される。溶融塩は、塩が槽のそれぞれを通って流動するように、溶融塩容器(10)から循環させられる。原料は、各槽の中の電極にわたって電位を印加することによって、各槽の中で還元され、その電位は、原料の還元を引き起こすのに十分である。また、本発明は、本方法を実装するための装置も提供する。 (もっと読む)


【課題】金属インジウム含有合金から、高度に精製された高純度の金属インジウムを高回収率で取得できる方法を提供する。
【解決手段】ITOターゲットのスクラップ等を還元処理して得られた金属インジウム含有合金を陽極とし、金属インジウムを陰極とし、臭化インジウムを含む溶融塩を電解質として、電流密度:1〜200A/dm、操作温度:90〜500℃で溶融塩電解し、陰極から精製された金属インジウムを得る。 (もっと読む)


【課題】非鉄製錬、基板や電子部品などのリサイクル原料の溶融炉や産業廃棄物の溶融処理炉の煙灰から鉛を回収する方法において、アノード鋳造された鉛の電解精製においてフッ素除去設備を設置する必要なく、平滑な電着鉛を回収することができる鉛の電解方法を提供する。
【解決手段】鉛、スルファミン酸からなる電解液中にノイゲンBN-1390及び又はノイゲンBN-2560を1〜700mg/Lになるように添加することで平滑な電着鉛を回収することを特徴とする鉛の電解方法。 (もっと読む)


【課題】ジルコニア鉱石中に酸化物として含まれるジルコニウム及びハフニウムを分離して製造する技術に関し、二次廃棄物の発生量が低減されるといった経済性の高い、金属の電解製造技術を提供する。
【解決手段】金属の電解製造装置10において、ジルコニウム酸化物及びハフニウム酸化物を含む原料Sを支持する第1電極60と、第1電極60とは反対極性の電圧が印加される第2電極70と、第1電極60及び第2電極70を浸漬させる電解浴13を保持する電解槽14と、ジルコニウム酸化物及びハフニウム酸化物を第1電極60において還元させる還元電圧を生成するとともに、前記還元されたもののうちハフニウムを選択的に第2電極70に析出させる析出電圧を生成する直流発生部12と、を備えることを特徴とする。 (もっと読む)


【課題】電極間の間隔を狭くしても安定して電極を吊り下げることができる電極用クレーンを提供する。
【解決手段】電解精製設備において、原料電極と析出電極E2を電解槽に挿入離脱させるために使用されるクレーンであって、複数の原料電極を同時に支持解放する支持部を備えた原料電極吊下手段と、析出電極E2を同時に支持解放する支持部を備えた析出電極吊下手段30と、析出電極吊下手段30を移動させて、析出電極E2を隣接する原料電極に対して接近離間させる間隔調整手段とを備えており、間隔調整手段が、析出電極E2が隣接する一対の原料電極に対して等距離となるように配置する作業位置と、析出電極E2が隣接する一対の原料電極のうち、いずれか一方の原料電極から離間した状態となるように配置する退避位置との間で析出電極吊下手段30を移動させるものである。 (もっと読む)


【課題】陰極板の懸垂性の測定時間を短縮することを課題とする。
【解決手段】陰極板2の懸垂性測定装置1は、電解精錬用の陰極板2を吊す懸吊部3と、懸吊部3に吊されて振れた状態の陰極板2までの距離を非接触で計測する第1距離センサ5a乃至第12距離センサ5lと、第1距離センサ5a乃至第12距離センサ5lにより計測された陰極板2までの距離に基づいて、静止状態の陰極板2の仮想位置を推定し、陰極板2の懸垂性を算出する制御装置6と、を備えている。 (もっと読む)


カソード上での金属銅の電気化学的堆積を通した廃棄工業用電解質を含む工業用電解質から銅粉末および銅ナノ粉末を得るための方法は、電流の方向変化なしで、または電流の方向変化ありで定電位パルス電解を使用すること、電流電位範囲のプラトーが−0.2V〜1Vである電流電圧曲線のプラトーに近いか、またはプラトー上のカソード電位値を使用すること、そして金、白金またはステンレススチールワイヤーもしくは箔でできた可動または固定超マイクロ電極または超マイクロ電極の配列をカソードとして使用し、一方金属銅をアノードとして使用し、そしてこの方法が18〜60℃の温度で行われ、そして電解が0.005〜60秒続くことにある。この方法はおよび廃棄工業用電解質から99%+〜99.999%の純度でおよび追加の処理なしで銅産業および電気めっきプラントの廃水から、粒子構造および寸法再現性によって特徴付けられるナノ粉末および粉末を得るために使用できる。
(もっと読む)


21 - 40 / 93