説明

Fターム[4L037AT05]の内容

無機繊維 (8,808) | 後処理 (359) | 物理的;機械的処理 (176)

Fターム[4L037AT05]に分類される特許

61 - 80 / 176


【課題】急激に冷却された場合でも、ディスクセパレーションが発生したり、クラックが発生したりすることのない、耐スポーリング性に優れたディスクロールを提供する。
【解決手段】ウェットボリュームが300ml/5g以上で、かつ、非晶質または結晶化率が50%以下である無機繊維を含むスラリー原料を板状に成形し、乾燥してディスク用基材を製造し、前記ディスク材用基材をリング状に打ち抜いてディスク材とする。また、前記ディスク材を回転軸に複数枚嵌挿させてディスクロールを得る。 (もっと読む)


【課題】樹脂と複合化させて炭素繊維強化複合材料とした場合に複合材料が高い強度等を示すと共に、複合材料製造時の毛羽発生を抑制し且つ得られる複合材料の剥離を抑制する炭素繊維を提供する。
【解決手段】ストランド弾性率が290〜350GPa、表面酸素濃度比O/Cが10〜25%、サイズ剤付着量が0.4〜1.7質量%、張力下のストランド幅広がり性が135tex/mm以下であり、動的測定による初期濡れ性A(mN/tex)が、−1.3×10-4≧A≧−6.5×10-4の範囲である炭素繊維。 (もっと読む)


【課題】電気泳動法と電解メッキ法の同時実施によって、ナノ粒子と金属がカーボン纎維に同時に混合附着されるようにした多成分同時蒸着による多機能性複合纎維と、これを具備した複合材料及び多機能性複合纎維の製造方法を提供することを課題とする。
【解決手段】本発明による多成分同時蒸着による多機能性複合纎維は、直径が5〜10μmの外径を持つ連続纎維が多数本纏まった束形状を持つカーボン纎維120と、前記カーボン纎維120の外面に電気泳動過程を通じて附着されるナノ粒子160と、前記カーボン纎維160の外面に電解メッキ過程を通じて附着される金属140を含んで構成されて、前記ナノ粒子160と金属140は電気泳動過程と電解メッキ過程の同時実施によって、前記カーボン纎維120の外面に混合した状態で附着されたことを特徴とする。 (もっと読む)


【課題】横型炭素化炉内で付着した珪素化合物を除去し、品位の優れた炭素繊維糸条の製造方法を提供すること。
【解決手段】シリコーン系油剤が付与されたポリアクリロニトリル系前駆体繊維糸条を酸化性雰囲気で200〜300℃で耐炎化し、得られた耐炎化繊維を不活性ガス雰囲気の炭素化炉で炭素化処理して炭素繊維糸条を製造する方法において、炭素化炉として横型炭素化炉を用い、該横型炭素化炉から出炉した炭素繊維糸条を液体で満たした槽に浸漬することを特徴とする炭素繊維糸条の製造方法。 (もっと読む)


【課題】高熱伝導性であり、成形性が高いピッチ系黒鉛化短繊維フィラー及び複合成形材料を提供すること。また、生産性の良い製造方法を提供すること。
【解決手段】光学顕微鏡で観測した真円換算平均繊維径D1が0.5μm以上3μm以下であり、真円換算繊維径の変動係数CV値が15%以上50%以下であり、かつ、平均繊維長L1と真円換算平均繊維径D1との比L1/D1が2以上100以下であって、乾式微粉砕により得られたものであることを特徴とするピッチ系黒鉛化短繊維フィラー。 (もっと読む)


【課題】 母材と混合したときに優れた分散性を示し、外力により容易に配向することができる微細炭素繊維およびその繊維を用いた複合体の提供。
【解決手段】 中空構造を有し、繊維外径が1〜1000nm、アスペクト比が5〜1000、BET比表面積が2〜2000m2/g、X線回折法による(002)面の平均面間隔d002が0.345nm以下、ラマン散乱スペクトルの1341〜1349cm-1のバンドのピーク高さ(Id)と1570〜1578cm-1のバンドのピーク高さ(Ig)の比(Id/Ig)が0.1〜2であり、繊維の長手方向に対して屈曲度が30度以下の直線性を有し、サスペンジョン法で測定した異方性磁化率が1×10-4以上である直線性微細炭素繊維、及びそれを用いた複合体。 (もっと読む)


【課題】CNT生成工程と連続繊維化工程とを直結した、CNT連続繊維を連続的に製造することができる実用的な方法および装置を提供することを目的とする
【解決手段】反応炉内に炭素源と触媒とキャリアガスとを投入し、流動気相CVD法によって連続的にカーボンナノチューブを生成してカーボンナノチューブ連続繊維を得るにあたり、前記反応炉から、ガスおよび粉塵を、前記カーボンナノチューブとは分離して排出するとともに、生成された前記カーボンナノチューブを大気雰囲気へと引き出してカーボンナノチューブ連続繊維を得る。 (もっと読む)


【課題】断熱材、成形断熱材材料としての使用に好適なハンドリング性の良いピッチ系炭素繊維フェルトを提供すること。また生産性の高い製造方法を提供すること。
【解決手段】原料がメソフェーズピッチであるピッチ系炭素繊維前駆体を捕集し、連続してクロスラップしたものを、不融化、炭化処理、およびフェルト化処理することによって得られる、厚み方向の層間剥離強度が0.25N/5cm片以上であるピッチ系炭素繊維フェルト及びその製造方法。 (もっと読む)


【課題】分岐構造の無い超微細炭素繊維を、生産性良く製造する方法を提供する。
【解決手段】(1)熱可塑性樹脂100質量部と、熱可塑性炭素前駆体1〜150質量部とからなる樹脂組成物を100℃〜400℃の雰囲気温度下で成形して、前駆体成形体を得る工程、
(2)前駆体成形体に含まれる熱可塑性炭素前駆体を安定化して安定化前駆体成形体を形成する工程、
(3)安定化前駆体成形体から熱可塑性樹脂を除去して繊維状炭素前駆体を形成する工程、
(4)繊維状炭素前駆体を不活性ガス雰囲気下で炭素化または黒鉛化して極細炭素繊維を得る工程、
(5)上記極細炭素繊維を含む液体を100MPa以上の高圧噴射流で衝突させる工程、
を経ることを特徴とする、超微細炭素繊維の製造方法。 (もっと読む)


【課題】前駆体繊維束を焼成して炭素繊維束を製造する上で、新たな設備投資を抑えつつ、焼成工程における装置内の繊維束密度を高めて、フィラメント数の少ない炭素繊維束を高効率に生産でき、毛羽の発生が極めて少ない高品質の炭素繊維束が得られる、複数炭素繊維束巻取体を製造する方法を提供する。
【解決手段】炭素繊維前駆体繊維束に、空気交絡処理を施し、収束性を付与する工程、前記炭素繊維前駆体繊維束に耐炎化処理、炭素化処理を施し、炭素繊維束とする工程、少なくとも2本の前記炭素繊維束を引き揃えることなく単一のボビンに巻き取る、又は互いに並列に配置し、かつ単一のボビンに巻き取る工程を有する。 (もっと読む)


【課題】本発明の目的は、熱硬化性樹脂と混練しても樹脂の硬化阻害を引き起こす恐れの少ないピッチ系黒鉛化短繊維を提供することにある。
【解決手段】本発明は、(i)光学顕微鏡で観測した平均繊維径が2μmより大きく20μm以下で、平均繊維径に対する繊維径分散の百分率が3〜20%であり、
(ii)走査型電子顕微鏡での観察表面が実質的に平坦であり、かつ
(iii)透過型電子顕微鏡による繊維末端のグラフェンシート端面の全長が50nmを超え300nm未満である5本の繊維末端を観察したときに、下記式(1)
閉鎖率(%)=B/A ×100・・・(1)
A:繊維末端のグラフェンシート端面の全長(nm)
B:端面がU字状に湾曲している部分の長さ(nm)
で表される閉鎖率の平均(平均閉鎖率)が80%を超え100%未満であるピッチ系黒鉛化短繊維である。 (もっと読む)


【課題】高い圧縮強度を示す炭素繊維及びその製造方法を提供する。
【解決手段】炭素化処理温度1300℃以上で焼成した炭素繊維を、ガス吸着測定装置により測定される比表面積が0.6〜1.2m/g、AFM装置により測定される表面粗さが20nm以下、サイクリックボルタンメトリー法により測定されるIpaが0.05〜0.15、Ipaのバラツキが8%以下となるまで電解酸化表面処理することにより得られる炭素繊維、及びその製造方法。 (もっと読む)


【課題】 任意のカーボンナノチューブ配向膜からカーボンナノチューブ繊維を製造する技術を提供する。
【解決手段】
カーボンナノチューブ繊維製造装置1は、CNT配向膜10を保持する基板20と、紡糸治具30と、電源装置40と、容器50と、からなる。容器50は、その中に熱硬化性樹脂を溶解させてなる有機溶媒からなる溶液3を保持している。
上記装置を用いて、まず、CNT配向膜10を溶液3に浸漬し、CNT配向膜10のCNT束11を紡糸治具30に保持させる。
次に、紡糸治具30を配向方向上側に向かって引き上げると同時に、電源装置40によりCNT配向膜10と紡糸治具30との間に電流を印加する。紡糸治具30に保持されるCNT束11と、CNT配向膜10に残るCNT束11と、の接触する面積が所定の値より小さくなったときに、熱硬化性樹脂によりCNT束11同士が接合する。 (もっと読む)


【課題】カーボンナノチューブの張力を更に増強する目的で、カーボンナノチューブに石英被覆した石英−クラッド・カーボンナノチューブを提供する。
【解決手段】内径3mm且つ外径5mm程度の石英管15中に、複数のカーボンナノチューブファイバー16を真空封入し(A)、該カーボンナノチューブファイバー16が白熱軟化する900℃〜1300℃の温度となるように前記石英管15を酸素ガス17で加熱して、前記カーボンナノチューブファイバー16を軟化させる工程(B)と、当該軟化中に、カーボンナノチューブファイバー16を前記石英管15の外径が0.1mm以下となるまで前記石英管15と共に牽伸する工程と、これを室温まで急冷して、カーボンナノチューブファイバー16束を含み、可撓性を持つ石英−クラッド・カーボンナノチューブファイバー18束を製造する工程(C)と、より成る製造工程によって製造される。 (もっと読む)


【課題】酸素還元活性の低下を招く炭素のナノシェル構造の粒径の粗大化を防いだ、炭素触媒を提供する。
【解決手段】炭素前駆体高分子を調製する工程と、炭素前駆体高分子に遷移金属又は遷移金属の化合物を混合する工程と、炭素前駆体高分子及び遷移金属又は遷移金属の混合物を繊維化して繊維を得る工程と、繊維を炭素化する工程とにより、炭素触媒を製造する。 (もっと読む)


【課題】耐久性に優れた断熱材材料に適した炭素繊維フェルトを提供する。
【解決手段】メソフェーズピッチを用い、平均繊維径、繊維径分布、平均繊維長を制御したピッチ系炭素繊維フェルト、及びこれを用いた炭素繊維含有断熱材。 (もっと読む)


【課題】放熱性が高い放熱材料を得ることができるピッチ系炭素繊維フィラーを提供する。
【解決手段】メソフェーズピッチを原料とし、平均繊維径が2〜20μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が5〜15であり、平均繊維長が10〜700μmであって、透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じており、走査型電子顕微鏡での観察表面が実質的に平坦であり、真密度が2.1〜2.3g/cm3であり、表面pHが6.0〜8.0であるピッチ系炭素繊維フィラー。又この炭素繊維フィラーを用いて組成物及び成形体を作製する。 (もっと読む)


【課題】炭素材料を加熱処理する熱処理装置において生産性が高く維持しかつ搬送経路における炭素材料の詰まりを防止する。
【解決手段】繊維状あるいは粉体状の炭素材料を加熱処理する熱処理装置であって、上記炭素材料を収容すると共に導電材料からなる坩堝4と、該坩堝4に収容された上記炭素材料を圧縮する圧縮手段25と、該圧縮された上記炭素材料に対して上記坩堝4を介して通電することにより加熱処理する通電手段25とを備える。 (もっと読む)


【課題】端部に割れや欠けの無い高品質な炭素繊維シートが得られるとともに、高温炉の煩雑なメンテナンスを必要としない炭素繊維シートの製造方法を提供する。
【解決手段】少なくとも炭素繊維と有機物とからなる炭素繊維シート前駆体を、1500〜3000℃の高温炉内に設けられた炉床上を引きずりながら搬送して加熱する炭素繊維シートの製造方法であって、前記炭素繊維シート前駆体と、前記高温炉を構成するマッフル上壁との間に前記炭素繊維シート前駆体よりも広幅の耐熱シートを配設し、前記炭素繊維シート前駆体を加熱する炭素繊維シートの製造方法。 (もっと読む)


【課題】本発明は電気二重層キャパシタの電極剤、放熱材料、樹脂補強材として好適に使用できる炭素繊維およびその製造方法を提供する。
【解決手段】 下記(a)〜(d)の工程よりなる炭素繊維の製造方法。
(a)メソフェーズピッチからメルトブロー法により炭素繊維前駆体を得る紡糸工程、
(b)前工程(a)で得られた炭素繊維前駆体を不融化して不融化炭素繊維前駆体を得る不融化工程、
(c)前工程(b)で得られた不融化炭素繊維前駆体を20〜5000ppmの酸化性ガスを含む不活性ガス雰囲気下、500〜1000℃で5〜120分焼成して炭素繊維を得る焼成工程、ついで
(d)前工程(c)で得られた炭素繊維を粉砕する粉砕工程 (もっと読む)


61 - 80 / 176