説明

Fターム[4M104AA04]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | 化合物半導体(半絶縁性基板を含む) (3,646) | III−V族 (2,000)

Fターム[4M104AA04]の下位に属するFターム

GaAs (523)

Fターム[4M104AA04]に分類される特許

81 - 100 / 1,477


【課題】従来の横型のダイオード素子は、表面二電極間における電流経路に半導体界面が現れるため、界面状態に起因する雑音が大きいという点を解決するダイオード素子、検出素子等を提供する。
【解決手段】ダイオード素子は、第一の導電型の低濃度キャリア層103と、第一の導電型の高濃度キャリア層102と、半導体表面上に形成されたショットキー電極104及びオーミック電極105と、を備える。低濃度キャリア層のキャリア濃度は、高濃度キャリア層のキャリア濃度より低く、オーミック電極の直下に第一の導電型の不純物導入領域106が形成される。ショットキー電極及びオーミック電極の間の半導体表面に、ショットキー電極とは電気的に接触しない第二の導電型の不純物導入領域107が形成され、第二の導電型の不純物導入領域が第一の導電型の不純物導入領域と接する。 (もっと読む)


【課題】ドレイン電極配線によって形成されるフィールドプレートに起因する電流コラプス現象への影響が抑制された窒化物半導体装置を提供する。
【解決手段】窒化物半導体からなる機能層20と、機能層20上に離間して配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で機能層20上に配置されたゲート電極5と、機能層20上に配置された層間絶縁膜7と、層間絶縁膜7上に配置され、ドレイン電極4と電気的に接続されたドレイン電極配線41とを備える窒化物半導体装置であって、ゲート電極5とドレイン電極4間において、層間絶縁膜7を介してドレイン電極配線41が機能層20と対向する領域を有さない。 (もっと読む)


【課題】ゲート電極へのリーク電流を大幅に低減できるGaN系化合物半導体装置を提供する。
【解決手段】このGaN系HFETによれば、ゲート電極をなすTiN膜の抵抗率(Ω・μm)を24.7(Ω・μm)とした。このように、ゲート電極のショットキー電極層としてのTiN膜の抵抗率が10Ωμm以上であることによって、ゲート電極をなす金属材料TiNの抵抗率(ゲートメタル抵抗率)が10Ωμm未満である場合に比べて、ゲートリーク電流を著しく低減できる。 (もっと読む)


【課題】配線等のパターンを、材料の利用効率を向上させ、かつ、作製工程を簡略化して得られた表示装置である。また配線等のパターンを所望の形状で制御性よく形成された導電膜を有する表示装置である。
【解決手段】トランジスタ上の第1の導電膜と、第2の導電膜とは、複数の屈曲点を有するコの字状に設けられる。本形状であっても、第1の導電膜と、第2の導電膜とはパターンを所望の形状で制御性よく形成される。なお、第1の導電膜と第2の導電膜は、共通電極層と、画素電極層となることができる。 (もっと読む)


【課題】メタル電極に設けられた延伸部の表面を覆う絶縁膜の剥離が抑制された半導体素子を提供する。
【解決手段】半導体からなる活性層に積層されたn型またはp型の半導体層と、該半導体層の上に配置され接続部および延伸部を有するメタル電極と、該メタル電極の該延伸部の上面および側面を少なくとも覆う絶縁膜と、を備え、該延伸部はメタル多層膜で形成され、該メタル多層膜は少なくとも2層の第1メタル層と、該第1メタル層と交互に積層された第2メタル層とを含み、かつ、その最上層は該第2メタル層のひとつであり、該メタル多層膜に含まれる該最上層の第2メタル層以外の第2メタル層の各々の端面が該延伸部の側面に露出して該絶縁膜と接しており、該第2メタル層を構成する第2メタル材料は該第1メタル層を構成する第1メタル材料よりも導電率は低いが該第1メタル材料よりも該絶縁膜との密着強度に優れている。 (もっと読む)


【課題】キャリア補償の影響を低減可能なIII族窒化物系電子デバイスを提供する。
【解決手段】III族窒化物系電子デバイス11では、ドリフト層15は主面13a上に設けられており、また1×1017cm−3未満のシリコン濃度を有するn型III族窒化物系半導体からなる。このシリコンはドナーとして作用する。合成オフ角は主面13aの全体にわたって0.15度以上である。合成オフ角は、例えばIII族窒化物支持基体13のC面の単位法線ベクトルVCと主面13aの単位法線ベクトルVPとの成す角度である。合成オフ角の値は、主面13a上にわたって分布している。ドリフト層15内における炭素濃度Nは3×1016cm−3以下である。 (もっと読む)


【課題】工程が煩雑になることなく、埋め込み部分のボイドやシームを解消することができるタングステン膜の成膜方法を提供すること。
【解決手段】処理容器内において、ホールを有する基板にCVDによりタングステン膜を成膜してホール内にタングステンの埋め込み部を形成する工程と、同じ処理容器内にエッチングガスとしてClFガスまたはFガスを供給して埋め込み部の上部をエッチングし、開口を形成する工程と、開口が形成された埋め込み部を有する基板に対して同じ処理容器内において、CVDによりタングステン膜を成膜する工程とを有する。 (もっと読む)


【課題】シリコン基板直上の窒化アルミニウム層の平坦性が低いことに起因する信頼性の低下が抑制された半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板上に配置された、不純物としてシリコンがドープされた領域を有する窒化アルミニウム層20と、窒化アルミニウム層上に配置された、複数の窒化物半導体膜が積層された構造のバッファ層30と、バッファ層上に配置された、窒化物半導体からなる半導体機能層40とを備える。 (もっと読む)


【課題】高品質のオーミックコンタクトをIII−V族半導体材料に形成して、消費電力が低くて長寿命の半導体デバイスを作製する。
【解決手段】半導体デバイス100は、第1の伝導帯および第1の価電子帯のエネルギレベルを有する第1のIII−V族半導体層110、第2の伝導帯および第2の価電子帯のエネルギレベルを有する第2のIII−V族半導体層120、およびフェルミエネルギレベルを有する金属層130を含む。このフェルミエネルギレベルは第1および第2の価電子帯のエネルギレベルより高く、第2の価電子帯のエネルギレベルは金属層130のフェルミエネルギレベルと第1の価電子帯のエネルギレベルとの間に存在する。 (もっと読む)


【課題】逆方向リーク電流および閾値電圧を低減することができる半導体装置を提供すること。
【解決手段】表面12および裏面11を有するSiCエピタキシャル層6の表面12に接するように、アノード電極27をショットキー接合させる。そして、ショットキーバリアダイオード1の閾値電圧Vthを0.3V〜0.7Vにし、定格電圧Vにおけるリーク電流Jを1×10−9A/cm〜1×10−4A/cmにする。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】リードフレーム上に搭載された窒化物FETを備えスイッチング特性に優れた窒化物半導体装置を提供する。
【解決手段】窒化物FETと、複数のリードを含むリードフレームと、を備え、前記窒化物FETは少なくとも第1の主電極と第2の主電極と制御電極とを有し、前記リードフレームは、前記第1の主電極に接続される第1のリードと、前記第2の主電極に接続される第2のリード及び第3のリードと、前記制御電極に接続される第4のリードと、を有し、前記窒化物FETは、前記第3のリードと前記第4のリードとの間に印加される電圧に応じて前記第1のリードと前記第2のリードとの間に電流を流すことを特徴とする窒化物半導体装置。 (もっと読む)


【課題】二酸化珪素からなる層間絶縁膜を挟んでアルミニウムを含む電極とゲート電極とを配置した場合に、当該アルミニウムを含む電極とゲート電極とが短絡することを抑制することが可能な半導体装置の製造方法を提供する。
【解決手段】MOSFET100の製造方法は、活性層7上にゲート酸化膜91を形成する工程と、ゲート酸化膜91上にゲート電極93を形成する工程と、活性層7に対してオーミック接触するソースコンタクト電極92を形成する工程と、ソースコンタクト電極92が形成された後、ゲート電極93を覆うように二酸化珪素からなる層間絶縁膜94を形成する工程とを備え、ソースコンタクト電極92を形成する工程は、活性層7に接触するようにアルミニウムを含む金属層を形成する工程と、金属層を合金化する工程とを含む。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】電流コラプスを十分に抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1と、基板1上方に形成された化合物半導体積層構造2と、化合物半導体積層構造2上方に形成されたゲート電極3、及び平面視でゲート電極3を間に挟む2個のオーミック電極4a及び4bと、が設けられている。更に、ゲート電極3上方に形成され、ゲート電極3並びにオーミック電極4a及び4bから絶縁分離されたフィールドプレート6が設けられている。フィールドプレート6のオーミック電極4a及び4bを互いに結ぶ方向における少なくとも一方の端部は、平面視で、オーミック電極4a及び4bとゲート電極3との間に位置する。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2が各ドレイン電極11の長手方向の長さL1よりも短く、ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】フィンがバルク半導体上に形成されている場合においても、電流駆動力増大を図りつつ、オフリーク電流を低減させる。
【解決手段】フィン型半導体層1の両側面には、チャネル領域7のポテンシャルを制御するゲート電極4が配置され、チャネル領域7には、フィン型半導体層1のソース層2側から根元BM側にかけてポテンシャルバリアPB1、PB2が形成されている。 (もっと読む)


【課題】本実施形態は、窒化物半導体層のクラックがほとんどなく、表面の粗度が極めて優秀であるので、全体的な安定性の向上された窒化物系半導体素子を提供する。
【解決手段】本実施形態の窒化物系半導体素子は、基板と、前記基板上に形成されるアルミニウムシリコンカーバイド(AlSi1−x)前処理層と、前記前処理層上に形成されるAlがドーピングされたGaN層と、前記AlがドーピングされたGaN層上に形成されるAlGaN層とを含む。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】第1のトランジスタ上に設けられた第2のトランジスタと容量素子とを有し、第2のトランジスタの半導体層にはオフセット領域が設けられた半導体装置を提供する。第2のトランジスタを、オフセット領域を有する構造とすることで、第2のトランジスタのオフ電流を低減させることができ、長期に記憶を保持可能な半導体装置を提供することができる。 (もっと読む)


【課題】単一基板上にソース・ドレインを同一工程で同時形成したIII−V族半導体のnMISFETおよびIV族半導体のpMISFETのソース・ドレイン領域抵抗または接触抵抗を小さくする。
【解決手段】第1半導体結晶層に形成された第1チャネル型の第1MISFETの第1ソースおよび第1ドレインと、第2半導体結晶層に形成された第2チャネル型の第2MISFETの第2ソースおよび第2ドレインが、同一の導電性物質からなり、当該導電性物質の仕事関数Φが、数1および数2の少なくとも一方の関係を満たす。
(数1) φ<Φ<φ+Eg2
(数2) |Φ−φ|≦0.1eV、かつ、|(φ+Eg2)−Φ|≦0.1eV
ただし、φは、N型半導体結晶層の電子親和力、φおよびEg2は、P型半導体結晶層の電子親和力および禁制帯幅。 (もっと読む)


81 - 100 / 1,477