説明

Fターム[4M104GG06]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | バイポーラトランジスタ (275)

Fターム[4M104GG06]に分類される特許

61 - 80 / 275


【課題】 はんだ接合可能な上側電極と下側電極を有する半導体装置を好適に製造することができる半導体装置の製造方法を提供する。
【解決手段】 上側電極46と下側電極48を有する半導体装置10を製造する方法であって、半導体基板100の上面にオーミック接触する上側オーミック金属層46eを形成する上側オーミック金属層形成工程S4と、半導体基板100の下面にオーミック接触する下側オーミック金属層48fを形成する下側オーミック金属層形成工程S10と、メッキ法によって、上側オーミック金属層46eの表面と下側オーミック金属層48fの表面に、ニッケルと銅の少なくとも一方を含む表面金属層46c、48dを形成する表面金属層形成工程S12を有する。 (もっと読む)


【課題】消費電流及び抗折強度に優れる半導体装置を実現する。
【解決手段】半導体装置10は、半導体素子11と、半導体素子11の第1面の表面部に設けられた拡散領域12と、半導体素子11の第1面上に設けられた第1金属配線14と、半導体素子11を厚さ方向に貫通する貫通孔15と、貫通孔15内に設けられ、第1金属配線14bの裏面に接し且つ半導体素子11における第1面の反対側の第2面にまで延びる貫通電極16とを備える。更に、半導体素子11の第2面に設けられた凹部17と、凹部17内に設けられ、貫通電極16に電気的に接続された第2金属配線17とを備える。 (もっと読む)


【課題】基板が割れることなくかつ、反ることなく基板の厚さを薄くすることができる半導体装置の製造方法を提供すること。
【解決手段】素子部Aが形成されたn+半導体層10a上の素子部A上にソース電極16及びゲート取り出し電極を形成することで半導体素子基板18を形成し、この半導体素子基板18のソース電極16及びゲート取り出し電極が形成されない箇所の表面からn+半導体層10aの所望の深さまで、それぞれの素子を分離するように格子状の溝25を設け、この溝25及び、ソース電極16及びゲート取り出し電極が形成された各素子の間を樹脂35で充填し、樹脂35が充填された状態でn+半導体層10aの裏面を所望の厚さに研磨し、この研磨されたn+半導体層10aのそれぞれの素子部Aに対応する箇所にドレイン電極20を形成し、これらのドレイン電極20をダイシングテープ36に貼り付けて樹脂35が充填された箇所をダイシングする。 (もっと読む)


【課題】 サリサイドオフセット領域の形成により、ベース側の空乏層が十分に広がり、リーク電流や接合耐圧低下の問題を防ぐサリサイド処理を行った縦型バイポーラトランジスタを提供する。
【解決手段】 縦型バイポーラトランジスタは、半導体基板1に形成された第一導電型(N型)のコレクタ領域2と、コレクタ領域2内に形成された第二導電型(P型)のベース領域5と、ベース領域5内に形成された第一導電型のエミッタ領域6と、ベース領域5を囲むようにコレクタ領域2の表面部に形成されたフィールド酸化膜4と、ベース領域5上に形成されたサリサイド層14とを具備する。ベース領域5の表面は、サリサイド層14が形成されたサリサイド領域と、フィールド酸化膜4の端部とサリサイド領域の端部との間にサリサイド層が形成されていないサリサイドオフセット領域15とが設けられている。 (もっと読む)


【課題】 2層の電極構造を有するディスクリート型バイポーラトランジスタでは、2層目のベース電極下方に1層目のエミッタ電極が配置され、2層目のエミッタ電極下方に1層目のベース電極が配置される。このため電極の引き回しによる水平方向の配線抵抗がチップ内で不均一となり、電流容量が大きくできない問題があった。
【解決手段】 ベース領域を第1コンタクトホールを介して1層目の第1ベース電極と接続させ、第1ベース電極を第1スルーホールまたは第2スルーホールを介して2層目の第2ベース電極16と接続させる。エミッタ領域を第2コンタクトホールを介して1層目の第1エミッタ電極と接続させ、第1エミッタ電極を、第2ベース電極の第2開口部、第3スルーホールを介して、3層目の第2エミッタ電極と接続させる構成とする。これにより各セルの配線抵抗のばらつきを略均一軽減できる。 (もっと読む)


【課題】高いスイッチング速度と低いオン抵抗とを両立させたIGBTを得る。
【解決手段】このIGBT10においては、結晶欠陥層25が、活性領域20においてはn層102中に、非活性領域40においてはp型基板101中に形成されている。すなわち、活性領域20における結晶欠陥層25は、非活性領域40における結晶欠陥層25よりも表面からみて浅い位置に形成されている。このIGBT10においては、上記の構成により、正孔注入量が非活性領域40において少なくされることにより、スイッチング速度が高くなる。一方、活性領域20における正孔注入量の減少は非活性領域40よりも小さくなる。従って、この際のオン抵抗の増大は抑制される。 (もっと読む)


【課題】バイポーラトランジスタの高周波特性の向上を図る。
【解決手段】p型シリコン基板10上に形成されたn型導電型の第1コレクタ層14と、第1コレクタ層14上に形成された、第1コレクタ層14より幅の狭い、n型導電型の第2コレクタ層21と、第1コレクタ層14上に、第2コレクタ層21側面に接して形成された絶縁膜層20と、第2コレクタ層21上に形成された、p型導電型のベース層22と、ベース層22側面に接してに形成された、p型導電型のベース引き出し層25と、ベース層22上に形成された、n型導電型のエミッタ領域32とを備える。第1コレクタ層14とベース層22の間、又は第1コレクタ層14とベース引き出し層25の間に、絶縁膜層20が形成されていることにより、ベース・コレクタ間の接合容量を低減させる。 (もっと読む)


【課題】 2層の電極構造を有するディスクリート型バイポーラトランジスタでは、2層目のベース電極下方に1層目のエミッタ電極が配置され、2層目のエミッタ電極下方に1層目のベース電極が配置される。このため電極の引き回しによる水平方向の配線抵抗がチップ内で不均一となり、電流容量が大きくできない問題があった。
【解決手段】 1層目の第1エミッタ電極を島状に設け、第1ベース電極をこれらの周りを囲む平板状とする。2層目の第2エミッタ電極は、全ての第1エミッタ電極を覆う平板状に設け、第2ベース電極は第2エミッタ電極の周囲に枠状に設ける。第1エミッタ電極はその直下に設けた第2コンタクトホールを介してエミッタ領域とコンタクトし、直上に設けた第2スルーホールを介して第2エミッタ電極とコンタクトする。これにより電極の引き回しによる水平方向の配線抵抗を均一にできる。 (もっと読む)


【課題】半導体素子に損傷を与えず、且つ半導体素子の電気的特性を高精度に試験する。
【解決手段】半導体素子の第1の主面に導電性ペーストを配置する(ステップS1)。次に、半導体素子を導電性ペーストを介して支持台上に載置する(ステップS2)。次に、半導体素子の第2の主面に形成された電極にコンタクトピンを接触させる(ステップS3)。そして、支持台とコンタクトピンに電圧を印加して、半導体素子の電気的特性を試験する(ステップS4)。このような素子試験方法によれば、半導体素子に損傷が与えられず、且つ半導体素子の電気的特性が高精度に試験される。 (もっと読む)


【課題】絶縁膜中にコンタクトホールを形成せずに、絶縁膜の表面と裏面の間に導電領域を形成することを課題とする。
【解決手段】基板上の半導体素子及び第1の電極上に絶縁膜を形成し、絶縁膜中に第1の加速電圧で第1のイオンを添加して、絶縁膜中の第1の深さに第1の欠陥の多い領域を形成し、第1の加速電圧とは異なる第2の加速電圧で、第2のイオンを添加して、絶縁膜中の第1の深さとは異なる第2の深さに第2の欠陥の多い領域を形成し、第1及び第2の欠陥の多い領域上に、金属元素を含む導電材料を形成し、第1及び第2の欠陥の多い領域のうちの上方の領域から下方の領域に、金属元素を拡散させることにより、絶縁膜中に、第1の電極と、金属元素を含む導電材料とを電気的に接続する導電領域を形成する半導体装置の作製方法に関する。 (もっと読む)


【課題】積層された各層に平面的に電極が形成された、III族窒化物系化合物半導体素子
【解決手段】pnpトランジスタ100は、基板10の上に、図示しないバッファ層を介して、p型GaN層11、n型GaN層12、p型GaN層13を順に形成した後、ケミカルポリシングにより露出部である傾斜面11t、12t及び13tを形成し、そこに各々、コレクタ電極C、ベース電極B、エミッタ電極Eを形成して構成したものである。図1のpnp型トランジスタ100は、水平形状が1辺が500μmの矩形状で、その外周の1辺に水平面と10度の角度を成す傾斜面が形成されている。p型GaN層11、n型GaN層12及びp型GaN層13の膜厚はいずれも1μmであり、p型GaN層11の傾斜面11t、n型GaN層12の傾斜面12t及びp型GaN層13の傾斜面13tの幅はいずれも約5.8μmである。 (もっと読む)


【課題】 2層の電極構造を有するディスクリート型バイポーラトランジスタでは、2層目のベース電極下方に1層目のエミッタ電極およびベース電極が配置される。1層目の電極は2層目の電極よりその厚みが薄く、第2ベース電極下方の動作領域(エミッタ領域)から1層目のエミッタ電極を経由して、2層目のエミッタ電極へ流れる電流経路は、ほぼ真上に電流が引き上げられる第2エミッタ電極下方の電流経路と比べて抵抗が高くなり、チップ内の電流密度が不均一になる問題があった。
【解決手段】 第1ベース電極および第1エミッタ電極を全て短冊状に形成し、交互に平行して配置し、第2エミッタ電極の面積を第2ベース電極の面積より拡張する。これにより、エミッタ領域から第1エミッタ電極を介して第2エミッタ電極まで略真上に引き上げられる電流経路が増加するので、チップ全体の電流密度が不均一になることを回避できる。 (もっと読む)


【課題】
ベース電極とコレクタ半導体の電荷注入障壁の制御が可能である、高性能な縦型薄膜のトランジスタ素子および製造方法を提供する。
【解決手段】
基板10上に、第一電極20と、コレクタ半導体層30と、ベース電極40と、エミッタ半導体層31と、第二電極21とを順次積層するトランジスタ素子において、コレクタ半導体層とエミッタ半導体層の間にベース電極が存在するようにするとともに、コレクタ半導体層が金属酸化物よりなることを特徴とする。 (もっと読む)


【課題】2層の電極構造の絶縁膜の厚み分の段差に基づく固着不良を回避したディスクリート型バイポーラトランジスタを提供する。
【解決手段】1層目のエミッタ電極7の上下に設けられるエミッタコンタクトホールCH2とエミッタスルーホールTH2を非重畳とし、1つのエミッタ電極7についてエミッタコンタクトホールCH2とエミッタスルーホールTH2互いに離間して複数配置する。これにより、2層目のエミッタ電極17表面では、最大でも、膜厚が厚い絶縁膜に設けられたエミッタスルーホールTH2の段差の影響しか及ばず、2層目の電極表面の平坦性が向上する。これにより金属プレートの固着不良を回避できる。 (もっと読む)


【課題】ダイシング時の水圧を受け流し、エアブリッジ配線部の断線を防ぐ半導体装置を提供する。
【解決手段】半導体チップ上の半絶縁性基板と、半絶縁性基板の表面に配置され,それぞれ複数のフィンガーを有するゲートフィンガー電極、ソースフィンガー電極およびドレインフィンガー電極と、半絶縁性基板の表面に配置され,ゲートフィンガー電極、ソースフィンガー電極およびドレインフィンガー電極ごとに複数のフィンガーをそれぞれ束ねて形成したゲート端子電極、ソース端子電極およびドレイン端子電極と、ソース端子電極に、所定本数のソースフィンガー電極を接続するエアブリッジ配線部とを備え、エアブリッジ配線部は、ダイシング方向に対して例えば、約30度以上斜めに配置されている半導体装置。 (もっと読む)


【課題】自己発熱および高電流密度動作下においても劣化を生じにくく、高電流密度まで安定して通電可能な高信頼電極を有し、より高い信頼度を達成可能なヘテロ接合バイポーラトランジスタを提供すること。
【解決手段】半導体基板1上に、サブコレクタ層2、コレクタ層3、ベース層4、エミッタ層5およびエミッタコンタクト層6が順次積層されたヘテロ接合バイポーラトランジスタにおいて、エミッタコンタクト層6とエミッタ電極7との間に、Moの融点以上の融点を有する単体金属または合金からなるバリア金属層13−2(図2に示す)を有するバリア複合層13が介在することを特徴とするヘテロ接合バイポーラトランジスタを構成する。 (もっと読む)


【課題】横型絶縁ゲートトランジスタ素子を備え、オン抵抗の増加を抑制しつつ体格を小型化することのできる半導体装置及びその製造方法を提供する。
【解決手段】半導体層に構成されたLDMOS素子と、半導体層の主表面上に形成された絶縁膜を同一表面から貫通するコンタクプラグとしての、ソース領域とベースコンタクト領域とに接続された第1コンタクトプラグと、を備えた半導体装置であって、ベースコンタクト領域が、半導体層の主表面に略垂直な方向においてソース領域よりも主表面に対して下方で、半導体層の主表面に沿う方向においてソース領域と少なくとも一部が重なる位置に形成されている。そして、第1コンタクトプラグが、絶縁膜及びソース領域を貫通しつつベースコンタクト領域まで延設されている。 (もっと読む)


【課題】素子形成部のみ薄化し周辺部は初期の半導体基板の厚みを残した半導体ウエハの製造工程においては、最終工程で厚い周辺部が残るため、素子形成部の半導体チップを分割する従来のダイシング装置を用いることができない。この対策として、厚い周辺部を研削により除去することが考えられるが、厚い周辺部の裏面に金属層が形成されると、研削時に素子形成部の金属層が剥がれたり、砥石が劣化するなどの問題があった。
【解決手段】初期の厚み(第1の厚み)を有する半導体基板の、素子形成部のみを第2の厚みまで薄化し、周辺部を遮蔽板で覆い、素子形成部の裏面に金属層を形成する。その後、第1の厚みを残した初期周辺部を裏面側から第3の厚みになるまで研削し、素子形成部との段差が少ない周辺部を形成する。初期周辺部には金属層が形成されず、シリコン基板を研削できる。これにより、砥石の劣化等を防止できる。また従来のダイシング装置で素子形成部と周辺部を切り離すことができる。 (もっと読む)


【課題】より基板サイズの小型化を図ることができる半導体装置およびその製造方法を提供する。
【解決手段】2つのチップ1、21それぞれに縦型パワーMOSFETを作り込んでおき、2つのチップ1、21を互いに裏面同士が接続されるように貼り合せることで、一体化する。具体的には、Pチャネル型のパワーMOSFETとNチャネル型のパワーMOSFETとが互いのドレイン同士を電気的に接続した構造とする。このような構成とすれば、各半導体素子の間にリードフレームを配置した構造ではないため、その分、半導体装置の小型化を図ることができる。 (もっと読む)


【課題】トランジスタを短絡させることなく、シリサイド層を形成することができる半導体装置の提供。
【解決手段】バイポーラトランジスタ形成領域100と、CMOSトランジスタ形成領域200とを分離し、絶縁層52a,52bを形成し、上方に導電層56a,56bを形成し、側壁54a,54bを形成して、バイポーラトランジスタ形成領域100に、短絡防止部50aを形成すると同時に、CMOSトランジスタ形成領域200にゲート50bを形成する。バイポーラトランジスタのエミッタ領域40a、コレクタ領域40bおよびベース領域42aおよびCMOSトランジスタのソース領域40c,42bおよびドレイン領域40d,42cを形成し、各領域の上にシリサイド層60を形成する。短絡防止部50aは、エミッタ領域40a、コレクタ領域40bおよびベース領域42aのうち、いずれか2つの領域の間に位置する半導体基板10の上方に形成される。 (もっと読む)


61 - 80 / 275