説明

Fターム[4M104GG06]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | バイポーラトランジスタ (275)

Fターム[4M104GG06]に分類される特許

121 - 140 / 275


【課題】 シリサイド膜を有する半導体装置の製造方法に関し、少ない工程数でマスクを形成でき、シリサイド反応の際に半導体素子の性能低下を招く危険性の低いシリサイド作り分け方法を提供する。
【解決手段】 少なくとも一部に露出したシリコン表面を有する半導体基板を準備する工程と、前記半導体基板上に、前記露出したシリコン表面を覆って高融点金属の窒化膜を形成する工程と、少なくとも前記シリコン表面上の窒化膜の一部を選択的に除去し、前記シリコン表面の一部を露出すると共に前記シリコン表面の他の部分を覆う窒化膜パターンを形成する工程と、前記窒化膜パターンを覆って半導体基板上に高融点金属膜を形成する工程と、熱処理を行って、前記シリコン表面の一部とその上の高融点金属膜との間でシリサイド反応を生じさせる工程と、未反応の高融点金属膜およびその下の窒化膜パターンを除去する工程とを含む。 (もっと読む)


【課題】長波長レーザアニールを用い半導体基板内の所定の領域を選択的にアニールする。
【解決手段】レーザ光20の照射に対し膜厚が薄くなるに従い反射率が小さくなる反射率調整膜17を、領域Anおよび領域Apを有する半導体基板1上に形成した後、領域An上の反射率調整膜17をエッチングする。次いで、半導体基板1にレーザ光20を照射し、領域Anのn型半導体領域11、n型半導体領域14に対して、アニールを行う。同様にして、反射率調整膜17を半導体基板1上に形成した後、領域Ap上の反射率調整膜17をエッチングする。次いで、半導体基板1にレーザ光20を照射し、領域Apのp型半導体領域12、p型半導体領域15に対して、アニールを行う。 (もっと読む)


【課題】高周波用途の半導体装置に採用する厚い絶縁膜をLOCOS法で形成する場合に、バーズビーグ増による欠陥の増大や、高温で長時間の酸化時間に伴う欠陥の増大という問題があった。これ等の問題点を考慮すると、超高周波用途の半導体装置に現状で用いることができる酸化膜の膜厚を厚くするにも限界があった。
【解決手段】半導体層に複数のトレンチを設け熱酸化により一体化して、内部に空隙部を有する絶縁領域を形成する。トレンチの深さで絶縁領域の厚みを制御でき、従来のLOCOS法以上の厚い絶縁領域を結晶欠陥等を増大することなく形成できる。絶縁領域を例えば電極パッドの下方に設けることにより、浮遊容量を低減できる。また、絶縁領域内部の空隙部によって、更に浮遊容量を低減できる。 (もっと読む)


【課題】 単結晶ベースを有するヘテロ構造バイポーラ・トランジスタ及びこれに関連する方法を提供すること。
【解決手段】 ヘテロ構造バイポーラ・トランジスタ(HBT)及び関連する方法が開示される。一実施形態において、HBTは、基板と、基板の上のポリシリコン・エミッタと、基板内のコレクタと、コレクタに隣接した少なくとも1つの分離領域と、各分離領域の上に延びる単結晶シリコン・ゲルマニウムを含む真性ベースと、単結晶外部ベースとを含む。1つの方法は、分離領域の形成を、後で誘電体に変換される注入された多孔質シリコンの形成と置き換えるステップを含む。結果的に、分離領域の上に横方向の寸法が拡張された単結晶シリコン・ゲルマニウム・ベース・プロファイル層を形成することができる。 (もっと読む)


半導体デバイスを製作する方法は、第1のドーパント濃度を有する第1の伝導型の第1の半導体層を形成すること、および第1の半導体層上に第2の半導体層を形成することを含む。第2の半導体層は、第1のドーパント濃度よりも低い第2のドーパント濃度を有する。第2の半導体層を貫通して延びて第1の半導体層に接触する第1の伝導型の打込み領域を形成するように、第2の半導体層中にイオンが打ち込まれる。第1の電極が第2の半導体層の打込み領域上に形成され、第2の電極が、第2の半導体層の非打込み領域上に形成される。関連したデバイスも述べられる。
(もっと読む)


【課題】セルフアラインによる微細構造の加工が可能になった。リフトオフを用いているため、工程数を少なくでき、エッチングダメージによるデバイス特性の劣化も発生しない微細加工方法及び構造を提供すること。
【解決手段】この形態においては、透明基板1上の所定の領域に第一の膜2を形成する工程と、基板1と1第一の膜2上にレジスト膜3を形成する工程と、基板1の裏面から第一の膜2をマスクとしてレジスト3に対し斜め方向に光を照射し、非露光レジスト領域5と、露光レジスト領域4とを形成する工程と、レジスト膜上に第二の膜7を形成する工程と、非露光レジスト領域5及び非露光レジスト領域5上の第二の膜をリフトオフにより除去する工程と、を順次行う。 (もっと読む)


【課題】半導体基板101の裏面から半導体基板101の表面にある金属配線108bまで至るよう形成されたビアホール116を有する半導体基板101と半導体基板101の表面にありビアホール116によって半導体基板101の表面に開口部を有する位置にある金属配線108bとの密着性を向上させた半導体装置100の構造およびその製造方法を提供する。
【解決手段】半導体基板上に形成された金属層と、前記金属層の下に前記半導体基板と前記金属層が合金化反応して形成された合金化反応層と、前記半導体基板の裏面側から前記金属層または前記合金化反応層に至るよう形成されたビアホールとを備えることを特徴とする。 (もっと読む)


【課題】エミッタ層にまでシリサイド化反応が進入するのを抑制することが可能な半導体装置を提供する。
【解決手段】この半導体装置(バイポーラトランジスタ100)は、拡散層7と、拡散層7の表面上に形成され、金属と半導体との金属半導体化合物からなるコバルトシリサイド膜9aと、拡散層7とコバルトシリサイド膜9aとの間に形成され、コバルトシリサイド膜9aから拡散される金属の透過を抑制する反応抑制層8とを備える。 (もっと読む)


【課題】高耐圧でありながらオン抵抗が低く、ターンオフ時間が短く、安定動作が可能な半導体装置を提供する。
【解決手段】この半導体装置1は、ソース、ドレインおよびゲート電極をそれぞれ含むとともに、互いにドレイン領域が接続されるとともに、互いにゲート電極同士が接続されたNMOSFET11およびPMOSFET12を含むインバータ14と、コレクタ(C)、ベース(B)およびエミッタ(E)を含むとともに、インバータ14の出力がベース(B)に入力されるpnp型のバイポーラトランジスタ13とを備えている。 (もっと読む)


【課題】 微少な電極とコンタクト層との間のコンタクト抵抗を低くできる化合物半導体素子およびそのような半導体素子を工程数を増やすことなく製造する方法を提供する。
【解決手段】 GaAs基板1上に、所定の半導体層2,3,4,5を形成した後、InGaAsから構成されるオーミックコンタクト層6を、その表面が凹凸となるように、MOCVD法またはMBE法によって形成する。そして、オーミックコンタクト層6の凹凸表面上に、横幅が10μm以下である金属電極9を形成する。オーミックコンタクト層6と金属電極9の界面における凹凸状の構造は、高低差が0.1μmから0.5μmの範囲内にあり、かつ、隣り合う山と山との間隔が0.1μmから0.5μmの範囲内にある。 (もっと読む)


【課題】 半導体デバイスと後工程の相互接続体との間の誘電体材料層内にコンタクト構造体を製造する方法を提供すること。
【解決手段】 本発明の実施形態は、半導体デバイスと後工程の相互接続体との間の誘電体材料層内にコンタクト構造体を製造する方法を提供する。この方法は、誘電体材料層内に少なくとも1つのコンタクト開口部を作成するステップと、化学気相堆積プロセスによって第1のTiN膜を形成するステップであって、第1のTiN膜はコンタクト開口部をライニングする(内側を覆う)ステップと、物理的気相堆積プロセスによって第2のTiN膜を形成するステップであって、第2のTiN膜は第1のTiN膜をライニングするステップとを含む。本発明の実施形態によって製造されるコンタクト構造体も提供される。 (もっと読む)


【課題】基板(1)中に、ドープされた金属半導体化合物領域(14)を形成する方法を提供する。
【解決手段】特別な具体例では、本発明は、基板(1)中に、シリサイド領域(14)を形成する方法を提供する。この方法は、上部アモルファス領域(6)にドープした後に、基板(1)の結晶部分(2)の上に、上部アモルファス領域(6)を部分的に再成長させて再成長領域(10)を形成し、これにより再成長領域(10)と基板(1)の主表面(4)との間に残留上部アモルファス領域(7)を残す工程を含む。残留上部アモルファス領域(7)は、金属半導体化合物(14)を形成するのに使用される。 (もっと読む)


【課題】トレンチ構造のトランジスタの形状及び電極構造に関して自由に設計を行なうことができる半導体装置及び半導体装置の製造方法を提供する。
【解決手段】シリコン基板10の表面には複数の凹部10a,10a,…が設けられ、各凹部10aには、表面からエミッタ領域REとベース領域RBとがこの順序で配置されている。その他の領域がコレクタ領域RCとなってトランジスタを構成する。基板全面に電極としての導電体を設ける場合、凹部10aによる段差のため、ベース領域RB上のベース電極12Bとエミッタ領域RE上のエミッタ電極12Eとは分離された状態で形成される。そして、エミッタ電極12E及びベース電極12Bを被覆する層間絶縁膜13を形成し、層間絶縁膜13を介してエミッタ電極12E及びベース電極12Bとそれぞれコンタクトを取るためのボンディングパッド14E及び14Bをデバイスの上層に形成する。 (もっと読む)


【課題】半導体装置において半導体素子間の分離を好適に達成するとともに半導体装置の小型化を図ること。
【解決手段】半導体基板1と、半導体基板1上に形成されたエピタキシャル層2と、半導体基板1とエピタキシャル層2との間に形成された埋め込み層3と、エピタキシャル層2表面から埋め込み層3に達する第1のトレンチ7と、第1のトレンチ7内に埋め込まれるとともに埋め込み層3と接続されたドレイン取出電極8bと、ドレイン取出電極8bを電極とした半導体素子と、エピタキシャル層2表面からその半導体素子を囲むように設けられた第2のトレンチ5とを備え、第2のトレンチ5内の少なくとも側壁を絶縁膜6aで被覆した。 (もっと読む)


【課題】基板の表面をトレンチ構造にしてエミッタ領域及びエミッタ電極を設け、デバイスサイズを小型化、高集積化することができる半導体装置及び該半導体装置の製造方法を提供する。
【解決手段】シリコン基板10は、N型不純物(例えばアンチモンSb)が含有され、コレクタ領域RCを形成している。シリコン基板10の表面には、複数の凹部10a、10a、…を形成している。各凹部10aの底面及び側面には、エミッタ領域REを形成してあり、エミッタ領域REの下側及び各凹部10aを除くシリコン基板10の表面には、ベース領域RBを形成してある。エミッタ領域REにはN型不純物としてのリンが、ベース領域RBにはP型不純物としてのボロンが含有されている。 (もっと読む)


【課題】基板の表面をトレンチ構造にしてベース領域及びベース電極を設け、デバイスサイズを小型化、高集積化することができる半導体装置及び該半導体装置の製造方法を提供する。
【解決手段】シリコン基板10は、N型不純物として、例えば、アンチモンが含有され、コレクタ領域RCを形成している。シリコン基板10の表面には、複数の凹部10a、10a、…を形成してある。各凹部10aを除くシリコン基板10の表面の一部には、エミッタ領域REが各凹部10aで離隔されるように形成してあり、コレクタ領域RCの上側であって、各凹部10aの底面及び側面、並びにエミッタ領域REの下側には、ベース領域RBを形成してある。エミッタ領域REにはN型不純物としてのリンが、ベース領域RBにはP型不純物としてのボロンが含有されている。 (もっと読む)


【課題】トレンチ構造のトランジスタの電極を確実に分離することができる半導体装置及び該半導体装置の製造方法を提供する。
【解決手段】各凹部10aの側面及び各凹部10a周辺のシリコン基板10上面には、シリコン酸化膜11が形成してあり、さらに、シリコン酸化膜11の上面には、シリコン窒化膜13が形成されている。シリコン窒化膜13の縁辺は、シリコン酸化膜11の縁辺より突出させてオーバハング形状(庇状)にしてある。また、各凹部10aの開口部周りのシリコン酸化膜11は、等方性エッチングによってオーバハング形状にしてある。すなわち、各凹部10aの開口部周りは、シリコン窒化膜13によるオーバハングとシリコン酸化膜11によるオーバハングが形成されている。 (もっと読む)


【課題】メタルマイグレーションの信頼性を確保しつつ小型化を可能とした半導体装置を提供すること。
【解決手段】半導体層103と、この半導体層103の表面に設けられた表面絶縁膜108とを備える。表面絶縁膜108のうち一部の領域を、半導体層表面を露出させるように貫通してコンタクト穴120E,120Cが形成されている。第1のメタル層109E,109Cがコンタクト穴120E,120Cの底と側壁とに沿って設けられている。第1のメタル層109E,109C上に第2のメタル層111E,111Cが積層されている。 (もっと読む)


【課題】金属膜を必要以上に薄く形成しなくても、LOCOSエッジ付近での金属膜とベース絶縁膜との過度な合金化を防止できるようにした半導体装置の製造方法及び半導体装置を提供する。
【解決手段】エミッタ領域の基板1上からLOCOS層15B上にかけてシリコンゲルマニウム層51を連続して形成する。次に、エミッタ59領域のシリコンゲルマニウム層51上にエミッタ59を形成する。そして、エミッタ59が形成された基板1上にシリコン酸化膜を形成し、次に当該シリコン酸化膜をエッチバックすることによって、エミッタ59の側面にサイドウォール61Aを形成する。その後、基板1上にTiを形成し熱処理を施して、チタンシリサイド膜67を形成する。サイドウォール61Aを形成する工程では、LOCOSエッジ90上にサイドウォール61Bを付随的に形成する。 (もっと読む)


本発明は、ワイドバンドギャップデバイスを電圧過渡の抑制の間の損傷から保護する方法及びデバイスである。アバランシェ耐量を向上させることは、ワイドバンドギャップデバイスのブロック接合部に1つ以上のダイオード又はPNPトランジスタを配置することにより達成される。
(もっと読む)


121 - 140 / 275