説明

Fターム[5F033QQ98]の内容

半導体集積回路装置の内部配線 (234,551) | パターン形成方法,基板,導電膜,絶縁膜の処理方法 (47,095) | 空気、大気に晒さない連続処理 (330)

Fターム[5F033QQ98]に分類される特許

161 - 180 / 330


【課題】工程を増やすことなく、1枚のマザーガラス基板上に所望の部分にそれぞれ精密に配線の側面の角度を異ならせた配線を提供することを課題とする。
【解決手段】多階調マスクを用いることで1つのフォトレジスト層を1枚のマザーガラス基板から遠ざかる方向に向かって断面積が連続的に減少するテーパ形状を有するフォトレジスト層を形成する。1本の配線を形成する際、1枚のフォトマスクを用い、金属膜を選択的にエッチングすることで、場所によって側面形状(具体的には基板主平面に対する角度)が異なる1本の配線を得る。 (もっと読む)


【課題】熱応力によるストレスマイグレーションを防止することができる半導体素子及びその製造方法を提供する。
【解決手段】金属層220上に形成するインピュアー反射防止膜230を第1反射防止膜のTi膜と第2反射防止膜のTiN膜の積層構造とする。また第1反射防止膜と第2反射防止膜はインサイチュでかつ50℃以下の温度で形成する。 (もっと読む)


【課題】 異常な反応を起こる可能性を低減し、半導体集積回路装置の特性並びに歩留りの維持、向上を図ることが可能な基板処理方法を提供すること。
【解決手段】 被処理基板(W)を、弗素を含む処理ガスを含む雰囲気下でガス処理し、被処理基板(W)の表面に弗素を含む反応生成物(312)を形成する第1の工程と、ガス処理後の被処理基板(W)を加熱処理し、弗素と反応する反応ガスを含む雰囲気下でガス処理する第2の工程と、を具備する。 (もっと読む)


【課題】絶縁膜に開口された接続孔の内部に導電性材料を埋め込む接続部において、接続孔の底部に存在するシリサイド層の表面の自然酸化膜を除去することのできる技術を提供する。
【解決手段】層間絶縁膜(第1及び第2絶縁膜19a,19b)に接続孔20を開口して、接続孔20の底部にニッケルシリサイド層18の表面を露出させた後、半導体ウエハの主面上にHFガス及びNHガスを含む還元ガスを供給し、還元反応により生成物を形成してニッケルシリサイド層18の表面の自然酸化膜を除去する。このときのHFガスとNHガスとの流量比(HFガス流量/NHガス流量)は1より大きく5以下とする。また半導体ウエハの温度を30℃以下とすることが好ましい。その後、半導体ウエハに150から400℃の加熱処理を施すことにより、半導体ウエハの主面上に残留する生成物を除去し、続いてバリアメタル膜21を形成する。 (もっと読む)


【課題】平面上で垂直方向と水平方向にライン状のパターニング工程のみを行って露光装備の解像度以下に稠密に配列されたハードマスクパターンを形成すること。
【解決手段】半導体基板上に第2のハードマスクパターン107aを形成する段階と、第2のハードマスクパターン107aと交差する第1のパターン115aと第2のハードマスクパターン107a間に位置する第2のパターン115bを含む第3のハードマスクパターンを形成する段階と、第1のパターン115a間に第4のハードマスクパターン123aを形成する段階と、を含む半導体素子のハードマスクパターン形成方法。 (もっと読む)


【課題】 バリアメタル膜に本来求められるバリア性を維持しつつ、微細化が進む配線用のホールやトレンチに対し優れたステップカバレッジでバリアメタル膜を形成でき、その上、バリアメタル膜表面にボイドを生じることなくCu膜を形成できると共に、両者間で高い密着性が得られるようにした薄膜形成方法を提供する。
【解決手段】 バリアメタル膜を、ALD法によりTiN膜を形成し、当該TiN膜表面に、Ti、Ru及びCoの中から選択される膜またはこれらのうち少なくとも二種を含む合金膜をCVD法またはPVD法により積層して構成する。 (もっと読む)


【課題】金属配線を電気的に連結させるビアプラグを形成する工程過程で発生する素子の信頼性を低下させる問題を解消すること。
【解決手段】半導体基板上に多数の金属配線を形成する段階;ビアホールが形成される領域の前記金属配線上に反応防止膜を形成する段階;前記反応防止膜を含む前記半導体基板上に層間絶縁膜を形成する段階;前記反応防止膜の上部の前記層間絶縁膜をエッチングしてビアホールを形成する段階;前記ビアホール内部にビアプラグを形成する段階を含む半導体素子の製造方法。 (もっと読む)


【課題】 欠陥を修復する際に、正常に形成されるべき配線へダメージを与えてしまう。
【解決手段】 絶縁膜と、複数の配線を有する配線層と、が交互に積層された多層配線構造を有する半導体装置の製造方法において、配線層のうちの1層を第1の絶縁膜上に形成する工程と、第1の絶縁膜上に形成された配線層の欠陥を検出する工程と、検出工程の結果に基づいて、検出された欠陥に集束イオンビームを照射するか否かを選択する工程とを有する。そして、選択工程において集束イオンビームを照射すると選択された場合には、欠陥に集束イオンビームを照射した後、第1の絶縁膜上に形成された配線層上に第2の絶縁膜を形成する工程を有する。また、選択工程において集束イオンビームを照射しないと選択された場合には、欠陥に集束イオンビームを照射せずに第1の絶縁膜上に形成された配線層上に第2の絶縁膜を形成する工程を有する。 (もっと読む)


【課題】配線に十分なEM耐性を確保しつつ、配線層間・線間リークを低減しかつTDDB寿命を向上することができるとともに、ビアエッチの際に高選択比を確保して高信頼性な配線を得ることができる半導体装置およびその製造方法を提供する。
【解決手段】シリコン基板上の第1の絶縁膜1に形成された配線溝M1と、配線溝M1側壁及び底部に形成されたタンタル系バリアメタル2aと、タンタル系バリアメタル2aに沿って配線溝M1を埋め込むように形成されたCu膜2bと、Cu膜2b表面に形成された銅とシリコンの合金層または銅とシリコンと窒素のCuSiN層3aと、CuSiN層3aの上及び第1の絶縁膜1の上に形成され第1の絶縁膜1より高密度なSiNx膜3dとを有する。 (もっと読む)


【課題】過剰の温度を必要としない金属堆積に適合する脱着方法を提供する。
【解決手段】金属膜を基材上に堆積させる方法は、超臨界プレクリーンステップ、超臨界脱着ステップ、および金属堆積ステップを含む。好ましくは、プレクリーンステップは、基材の金属表面から酸化物層を除去するために超臨界二酸化炭素およびキレート化剤を基材と接触して維持することを含む。金属膜を基材上に堆積させるための装置は、移送モジュール、超臨界プロセシング・モジュール、真空モジュール、および金属堆積モジュールを含む。 (もっと読む)


【課題】プラズマ処理によってダメージを受けた絶縁膜を回復処理する際に、銅配線層などの配線材料上に回復剤が残留することがなく、かつドライプロセスによって処理が行われ、量産性に優れる絶縁膜のダメージ回復方法を得る
【解決手段】プラズマ処理によりダメージを受けた絶縁膜を、tert(ターシャリー)−ブチル基を含む化合物、炭化水素基とアミノ基を含む化合物、乳酸化合物のうち少なくとも1種以上の回復剤を接触させる。プラズマ処理後大気に曝すことなくダメージ回復処理を行うことが好ましい。また、アルコールなどの接触促進剤と接触させることもできる。 (もっと読む)


【課題】 本発明は、トンネル酸化膜の形成時に酸化膜に窒素を蓄積させた後、後続で酸素を注入するための工程を行ってSi−N結合をSi−O−N結合に変更することにより、窒素プロファイル(N profile)の変化による特性劣化の防止、電気的ストレスの緩和及び酸素密度の増加などを通じてサイクリング(cycling)及び電荷保存(retention)特性などの素子特性を向上させることができる半導体素子の製造方法を提供するものである。
【解決手段】 半導体基板上に第1の絶縁膜を形成する段階と、前記半導体基板と前記第1の絶縁膜の界面に窒素を蓄積させて第2の絶縁膜を形成する段階と、前記第2の絶縁膜に酸素を注入して第3の絶縁膜に変更させる段階とを含む構成としたことを特徴とする。 (もっと読む)


【課題】金属シリサイド層の異常成長を防止する。
【解決手段】半導体基板1にゲート絶縁膜5、ゲート電極6a,6b、ソース・ドレイン用のn型半導体領域7bおよびp型半導体領域8bを形成する。それから、サリサイド技術によりゲート電極6a,6bおよびソース・ドレイン領域上に金属シリサイド層13を形成する。そして、金属シリサイド層13の表面を還元性ガスのプラズマで処理してから、半導体基板1を大気中にさらすことなく、金属シリサイド層13上を含む半導体基板1上に窒化シリコンからなる絶縁膜21をプラズマCVD法で堆積させる。 (もっと読む)


【課題】ルテニウム含有膜と銅含有膜とを含む銅配線の低抵抗化を図り、その信頼性を向上させた半導体装置の製造方法、及び半導体装置の製造装置を提供する。
【解決手段】一般式(1)で示される有機ルテニウム錯体を含む原料と、還元性ガスとを用いるCVD法によって、凹部が形成された基板の上にRu膜を形成する(ステップS12)。そして、一般式(2)で示される有機銅錯体を含む原料と、還元性ガスとを用いるCVD法によって、Ru膜の上にCu膜を形成し、凹部に銅配線を形成する(ステップS14)。 (もっと読む)


【課題】ルテニウム含有膜と銅含有膜とを含む銅配線の低抵抗化を図り、その信頼性を向上させた半導体装置の製造方法、及び半導体装置の製造装置を提供する。
【解決手段】一般式(1)で示される有機ルテニウム錯体を含む原料と、還元性ガスとを用いるCVD法によって、凹部が形成された基板の上にRu膜を形成する(ステップS12)。そして、一般式(2)で示される有機銅錯体を含む原料と、還元性ガスとを用いるCVD法によって、Ru膜の上にCu膜を形成し、凹部に銅配線を形成する(ステップS14)。 (もっと読む)


【課題】抵抗率が改善された、共形性の高い拡散バリアの、インシチュウによる構築を遂行する。
【解決手段】本発明の一態様では、処理チャンバと、シャワーヘッドと、ウエハ支持体と、RFシグナル手段とを有していてもよい。シャワーヘッドを具備することにより、処理チャンバ内にガスを供給する。ウエハ支持体は、処理チャンバ内でウエハを支持するために具備される。シャワーヘッドに第1のRFシグナルを供給しまたウエハ支持体に第2のRFシグナルを供給するために、RFシグナル手段がシャワーヘッドとウエハ支持体の両方に結合していてもよい。あるいは、RFシグナル手段は、ウエハ支持体にRFシグナルを供給するためにウエハ支持体だけに結合していてもよい。本発明の態様を実施することによりアルミニウムや銅等のコンタクトメタルの拡散を防止する拡散バリアの能力を、向上させることができる。 (もっと読む)


【課題】基板から銅含有層の少なくとも一部を除去する方法であって、基板が少なくとも銅含有表面層を含む方法を提供する。
【解決手段】この方法は、第1反応チャンバ中で、銅含有表面層4の少なくとも一部を、ハロゲン化銅表面層5に変える工程と、第2反応チャンバ中で、光子含有雰囲気6に晒して、ハロゲン化銅表面層5の少なくとも一部を除去して、揮発性のハロゲン化銅生成物8の形成を始める工程とを含む。光子含有雰囲気6に晒す間に、この方法は、更に、第2反応チャンバから揮発性のハロゲン化銅生成物8を除去し、第2反応チャンバ中で揮発性のハロゲン化銅生成物8の飽和を避ける工程を含む。具体例にかかる方法は、銅含有層のパターニングに用いられる。例えば、本発明の具体例にかかる方法は、半導体デバイス中に銅含有相互接続構造を形成するのに使用される。 (もっと読む)


【課題】他の処理チャンバからの汚染をもたらさず、スループットを低下させずに各処理チャンバで処理を行うことができる真空処理システムを提供すること。
【解決手段】真空処理システム1は、ウエハWを搬送する第1の搬送室11にPVD処理チャンバ12〜15を接続してなる第1の処理部2と、ウエハを搬送する第2の搬送室21にCVD処理チャンバ22,23を接続してなる第2の処理部と、第1の搬送室11および第2の搬送室12の間にゲートバルブGを介して設けられ、ウエハWを収容し、かつ圧力調整可能なバッファ室5aと、バッファ室5aが第1の搬送室11および第2の搬送室12のいずれか一方に対して選択的に連通し、その内部の圧力が連通した搬送室内の圧力と適合するようにゲートバルブGの開閉およびバッファ室5aの圧力を制御する制御部110とを具備する。 (もっと読む)


【課題】集積回路のためのアルミニウム相互接続部メタライゼーションを、所望によりアルゴンが追加されてもよい純粋な酸素雰囲気中で制御可能に酸化させる。
【解決手段】ウエハ32をアルミニウムスパッタリング中に生じる300℃を超える温度からアルミめっきを施したウエハをプラスチックカセット34に装填させることを可能にする100℃未満まで冷却させるので有利に行われる。酸化は高真空搬送チャンバ62と低真空搬送チャンバ40の間の通過チャンバ56、80内で制御可能に行うことができる。酸素分圧は有利には0.01〜1トール、好ましくは0.1〜0.5トールである。1トールを超える全圧にアルゴンを添加すると、ウエハが水冷却ペデスタル上に載置された場合にウエハ冷却が促進される。スパッタチャンバへの酸素逆流を防止するために冷却チャンバは冷却中に真空ポンプで排気されず最初にアルゴンが次に酸素が冷却チャンバにパルスされる。 (もっと読む)


【課題】半導体素子の電極との接触抵抗が小さく、かつボイド等の発生がないように埋め込まれた銅のコンタクトプラグを有する半導体装置を提供する。
【解決手段】半導体素子の電極にコンタクトプラグが接続された半導体装置において、金属シリサイド層の電極を含む半導体素子と、半導体素子を覆うように形成された層間絶縁層と、層間絶縁層に、金属シリサイド層の表面が露出するように設けられたコンタクトホールと、コンタクトホールの内壁を覆うように形成されたバリアメタル層であって、層間絶縁層と接する領域がチタン層からなるバリアメタル層と、バリアメタル層上に形成されたルテニウムを含むシード層と、シード層上にコンタクトホールを埋め込むように形成された銅プラグ層とを含む。 (もっと読む)


161 - 180 / 330