説明

Fターム[5F033VV10]の内容

半導体集積回路装置の内部配線 (234,551) | 配線の用途 (10,506) | 受動素子 (1,084) | 容量 (664)

Fターム[5F033VV10]に分類される特許

141 - 160 / 664


【課題】簡便な方法により、マスク側壁への反応生成物の堆積を防止することができる半導体装置を製造する方法を提供する。
【解決手段】下部電極21、強誘電体、常誘電体、反強誘電体等による誘電体層22、及び上部電極23を含むキャパシタを複数備える半導体装置の製造方法は、上部電極層をパターニングして、複数の上部電極23、23’、23”を形成する工程と、複数の上部電極23、23”を被覆し、かつ最端に配置された上部電極23’の少なくとも一方側の端部を露出する第1マスクパターンを形成する工程と、第1マスクパターンを用いて、誘電体層22をパターニングする工程とを有する。 (もっと読む)


【課題】有機材料からなる下地の絶縁性層に対してダメージを与えることなく、かつ上部に設けられる有機半導体層に対して良好なオーミックコンタクトが得られるソース電極およびドレイン電極を低コストで得ることを可能にする。
【解決手段】有機絶縁層からなる基板11と、基板11上にめっき成膜された層からなるソース電極13sおよびドレイン電極13dの第1層13-1と、第1層13-1よりも有機半導体材料に対して低オーミック接合を形成する金属材料からなり第1層13-1を覆う状態でめっき成膜されたソース電極13sおよびドレイン電極13dの第2層13-2と、第1層13-1および第2層13-2で構成されたソース電極13sおよびドレイン電極13d間にわたって設けられた有機半導体層15とを備えた有機薄膜トランジスタ1aである。 (もっと読む)


【課題】デカップリングセルの配置場所を膨大な処理時間をかけて算出する必要が無く、電圧降下やノイズを効果的に防止できる位置にデカップリングセルを配置できる。
【解決手段】半導体集積回路100は、第1電位及び第2電位のセル用の電源配線101,102と、第1電位及び第2電位のセル用電源配線に垂直な方向に配置された第1電源配線103及び第2電源配線104と、スタンダードセル105と、デカップリングセル106とから構成される。第1電源配線103には第1電位、すなわち電源電位が供給され、第2電源配線104には第2電位、すなわちグランド電位が供給される。デカップリングセル106は、第2電源配線104の下に配置され、第1電位と第2電位が供給されている。スタンダードセル105の配置領域は、デカップリングセル106の配置部分以外の領域である。 (もっと読む)


【課題】従来技術ではアスペクト比の高い微細な開孔を形成することが困難である。
【解決手段】半導体基板上に第1の層間絶縁膜を形成し、この第1の層間絶縁膜に第1の開孔を形成し、この第1の層間絶縁膜上に、第1の開孔を充填しないように第2の層間絶縁膜を形成し、この第2の層間絶縁膜に、第1の開孔に接続する第2の開孔を形成する。 (もっと読む)


【課題】高周波デバイスを形成する複数の素子を一つのチップに形成できる技術を提供する。
【解決手段】
基板1上にて抵抗素子および容量素子の下部電極を同一の多結晶シリコン膜から形成し、前記多結晶シリコン膜とは異なる同一の多結晶シリコン膜およびWSi膜からパワーMISFETのゲート電極、容量素子の上部電極、nチャネル型MISFETのゲート電極およびpチャネル型MISFETのゲート電極を形成し、領域MIMにおいては基板1上に堆積された酸化シリコン膜30上に形成された配線を下部電極とし酸化シリコン膜34上に形成された配線を上部電極とする容量素子MIMCを形成し、酸化シリコン膜34上に堆積された酸化シリコン膜37上に堆積された同一のアルミニウム合金膜を用い領域INDにて配線39Aからなるスパイラルコイルを形成し、領域PADでは配線39Bからなるボンディングパッドを形成する。 (もっと読む)


【課題】層間絶縁層におけるコンタクトホールを形成した領域での膜残りを検出し、且つ層間絶縁層の膜残りの厚みを精度良く求める。
【解決手段】基板11に半導体層13及び半導体層13よりも酸化され難い第1検査用金属層27を形成し、半導体層13及び第1検査用金属層27を覆うように絶縁膜20を形成した後、絶縁膜20に半導体層13及び第1検査用金属層27をそれぞれ一部露出させるためのコンタクトホール21a及び検査用コンタクトホール21bを形成することで層間絶縁層21を形成し、層間絶縁層21にコンタクトホール21a及び検査用コンタクトホール21bの内部から表面にそれぞれ引き出された金属層22及び第2検査用金属層28を形成し、第1検査用金属層27と第2検査用金属層28との間の電気的特性を測定する。 (もっと読む)


【課題】インクジェット方式により緻密な配線の形成される積層構造体を提供する。
【解決手段】基板と、基板上において、エネルギーを付与することにより臨界表面張力が変化し、低表面エネルギー状態から高表面エネルギー状態へと変化する材料を含むものであって、エネルギーの付与により、高表面エネルギー領域と、低表面エネルギー領域とが形成されている濡れ性変化層と、濡れ性変化層の高表面エネルギー領域上に導電性材料により形成された導電層と、を有し、高表面エネルギー領域は、導電層による電気配線が形成される第1の領域と、第1の領域と接続されており、第1の領域よりも幅が狭く、第1の領域に導電材料を含む溶液を供給するための第2の領域とにより構成されていることを特徴とする積層構造体を提供することにより上記課題を解決する。 (もっと読む)


【課題】本発明は、微細ピッチ多層配線構造を用いた並走配線間容量によるデカップリング容量において、高周波,高速特性に優れた大きなデカップリング容量を形成できるようにすることを最も主要な特徴とする。
【解決手段】たとえば、同一方向にピッチ配列された複数の配線M1a〜M1h,M2a〜M2f,M3a〜M3hの、そのピッチ配列の方向が互いに交差するように配線層M1,M2,M3を積層させる。そして、各配線層M1,M2,M3の、隣り合う配線におのおの異なる電位VDD,VSSが供給されるように、配線層M1,M2,M3の相互を接続してなる構成となっている。 (もっと読む)


【課題】同じ導電型を有するトランジスタであっても、用途に応じて特性を好ましいものにする。
【解決手段】半導体装置100は、半導体基板102上に形成された同じ導電型を有する第1のトランジスタ210および第2のトランジスタ212を含む。第1のトランジスタ210は、ゲート絶縁膜としてHf含有ゲート絶縁膜106を含み、第2のトランジスタ212は、ゲート絶縁膜としてシリコン酸化膜124を含むとともにHf含有膜を含まない。 (もっと読む)


【課題】ビットコンタクトと容量コンタクトとの接触を防止する。
【解決手段】拡散層領域121,122を有するトランジスタ111と、層間絶縁膜151に埋め込まれ、それぞれ拡散層領域121,122に接続されたセルコンタクト131,141と、層間絶縁膜152に埋め込まれ、セルコンタクト131に接続されたビットコンタクト132と、層間絶縁膜153に埋め込まれ、ビットコンタクトと接続されたビット線130と、層間絶縁膜152,153に埋め込まれ、セルコンタクト141と接続された容量コンタクト142とを備える。ビット線130の側面130aは、ビット線130の延在方向に沿ったビットコンタクト132の側面132aと一致している。これにより、ビットコンタクトと容量コンタクトが直接短絡することがなくなるため、容量コンタクトの形成マージンが拡大する。 (もっと読む)


【課題】信号配線の電子ノイズをより低減させた電磁波検出素子を提供する。
【解決手段】走査配線101(2)、信号配線3、及び共通配線102(18)をセンサ部103よりも下層に各々絶縁膜を介して設けられた異なる金属層により形成されており、信号配線3を走査配線101及び共通配線102よりも厚く形成した。 (もっと読む)


【課題】 下部電極となるTiN膜の表面のラフネスを低減させるために、化学機械研磨、Arによるスパッタリング、Ta膜の堆積等の工程が必要になる。
【解決手段】 半導体基板(10)の上に薄膜キャパシタが配置されている。この薄膜キャパシタは、少なくとも表層部が非晶質または微結晶の金属で形成された下部電極(21a,22a)、該下部電極の上に配置された誘電体膜(23a)、及び該誘電体膜の上に配置された上部電極(24a)を含む。 (もっと読む)


【課題】開口率の高い半導体装置又はその製造方法を提供する。また、消費電力の低い半導体装置又はその製造方法を提供する。
【解決手段】ゲート電極として機能する透光性を有する導電層と、該透光性を有する導電層上に形成されるゲート絶縁膜と、ゲート電極として機能する透光性を有する導電層上にゲート絶縁膜を介して半導体層と、半導体層に電気的に接続されたソース電極又はドレイン電極として機能する透光性を有する導電層とで構成されている。 (もっと読む)


【課題】 集積回路の周囲の回路及び配線の構造を簡素化可能で、チップ本体の小型化が可能なチップを提供する。
【解決手段】 半導体チップ1は平面形状が略四角形の板状のチップ本体3と、チップ本体3の表面に設けられた複数の集積回路5a、5bと、チップ本体3の裏面に設けられた他の回路としての配線13a〜13fと、集積回路5a、5bと配線13a〜13fを接続する接続手段としてのコンタクト11a、11bを有している。
コンタクト11a、11bはチップ本体3を貫通して設けられた導電性物質である。
このように、集積回路5a、5bを互いに接続するための配線を、チップ本体3の裏面2bに設けることにより、配線を表面2aに設けた場合と比べて、集積回路の周囲の他の回路(配線)の構造を簡素化することができる。
即ち、半導体チップ1を従来よりも小型化することができる。 (もっと読む)


【課題】小型の半導体装置においても静電容量の大きなキャパシタを配置することが可能な構造を有する半導体装置を提供する。
【解決手段】半導体装置1は、半導体素子8が形成された半導体基板2と、半導体基板2のパッシベーション膜12を介して配置され1方向に長く形成された開口部4aを有する平面型のスロットアンテナ4と、スロットアンテナ4と並列接続する共振用キャパシタ15とを備え、共振用キャパシタ15はチップ型素子となっている。 (もっと読む)


【課題】コンタクトプラグ上に直接形成される下地層の結晶配向性を良好にし、さらにこの下地層の平坦性をも良好にすることで、下部電極や強誘電体膜の結晶配向性の改善を図った強誘電体メモリ装置の製造方法を提供する。
【解決手段】基板の上方に導電性の下地層を形成する工程と、下地層の上方に第1電極と強誘電体膜と第2電極とを積層する工程と、を含む強誘電体メモリ装置の製造方法である。下地層の形成工程は、プラグ20を含む層間絶縁膜26上に、自己配向性を有する導電材料からなる導電層411を形成する工程と、導電層411を窒素雰囲気中で熱処理し、窒化導電層412とする工程と、窒化導電層412を、シリコン酸化膜研磨用のスラリーを用いたCMP法によって低研磨速度で平坦化処理し、プラグ20を含む層間絶縁膜26上を覆った状態の平坦化窒化チタン層41とする工程と、を含む。 (もっと読む)


【課題】簡単な工程で絶縁膜、半導体膜、導電膜等の膜パターンを有する基板を作製する方法を提供する。また、層間絶縁膜、平坦化膜、ゲート絶縁膜等の絶縁膜、配線、電極、端子等の導電膜、半導体膜等の半導体素子の各部位の膜を形成する方法を提供する。また、低コストで、スループットや歩留まりの高い半導体装置の作製方法を提供する。
【解決手段】ガリウムと亜鉛を含む液滴を吐出して、基板上に膜パターンを形成する。または、印刷法により、基板上にガリウムと亜鉛を含む材料を用いて膜パターンを形成する。 (もっと読む)


【課題】従来の半導体装置の製造方法には、さらなる効率化が困難であるという課題がある。
【解決手段】第1基板41に設けられた第1半導体層51の表示面側に、平面視で第1半導体層51の一部に重なる第1導電パターン107を形成する工程と、第1導電パターンをマスクとして第1半導体層51に不純物を注入する第1注入工程と、前記第1注入工程の後に、第1導電パターン107の一部を除去して、第1導電パターン107と第1半導体層51とが平面視で重なる領域である第1重畳領域113aを縮小する縮小工程と、前記縮小工程の後に、ゲート電極部57をマスクとして第1半導体層51に前記不純物を注入する第2注入工程と、を有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】MIMキャパシタを追加しても高集積化を図ることができる半導体装置及びその製造方法を提供する。
【解決手段】本発明に係る半導体装置は、高耐圧領域にMIMキャパシタ及び高耐圧系トランジスタを有し、シリコン基板1に形成され、ゲート電極6及びソース・ドレイン拡散層5を囲むように形成された第1導電型のシールド用拡散層5aと、ゲート電極上に形成された層間絶縁膜9と、層間絶縁膜に形成され、シールド用拡散層上に位置し且つゲート電極を囲むように配置されたホール10aと、ホール内に埋め込まれたWプラグ11aと、Wプラグ及び層間絶縁膜の上に形成されたシールド用配線12aと、シールド用配線上に形成されたキャパシタ絶縁膜13及びキャパシタ上部電極14と、を具備し、MIMキャパシタは、シールド用配線12aをキャパシタ下部電極とすることを特徴とする。 (もっと読む)


【課題】特性が向上した半導体装置の製造方法及び半導体装置を提供すること。
【解決手段】本発明にかかる半導体装置の製造方法では、まず、絶縁性基板1上にゲート電極2を形成し、ゲート電極2上にゲート絶縁膜3を成膜する。そして、ゲート絶縁膜3上に非晶質半導体膜14を成膜し、非晶質半導体膜14に対して、レーザーアニールを行い、非晶質半導体膜14を微結晶半導体膜4に変換する。その後、微結晶半導体膜4に対してフッ酸処理を施し、フッ酸処理が施された微結晶半導体膜4上に、パターン端が微結晶半導体膜4のパターン端より外側に配置され、パターン端近傍においてゲート絶縁膜3と接するように非晶質半導体膜14を形成する。 (もっと読む)


141 - 160 / 664