説明

Fターム[5F045AE23]の内容

気相成長(金属層を除く) (114,827) | 成膜条件−成膜時の圧力 (3,707) | 減圧(圧力が明示されていない) (3,333) | 7.6≦P<76Torr(0.01≦P<0.1気圧 10.13≦P<101.3hPa) (552)

Fターム[5F045AE23]に分類される特許

101 - 120 / 552


【課題】反応管内の異物汚染を抑制し、装置稼働率の低下を防止することができる基板処理装置を提供する。
【解決手段】複数の基板を積層して収容する石英製の反応管203と、前記反応管内に処理ガスを供給する処理ガス供給系と、前記反応管内にクリーニングガスを供給するクリーニングガス供給系と、前記反応管内の雰囲気を排気する排気系と、前記処理ガス供給系と前記クリーニングガス供給系と前記排気系とを制御する制御系と、を有し、前記反応管内に前記基板の積層方向に沿って延びる石英製の板状部材266aを設け、前記クリーニングガス供給後の前記反応管内に付着した膜の除去状態を確認する。 (もっと読む)


【課題】電気特性が良好な半導体装置を、生産性高く作製する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する種結晶を形成した後、種結晶上に、第2の条件により種結晶の混相粒を成長させて混相粒の隙間を埋めるように、種結晶上に微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量を50倍以上1000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を1333Paより大きく13332Pa以下とする条件である。第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量を100倍以上2000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】長期信頼性が高い窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法を提供すること。
【解決手段】アルミニウム原子、ガリウム原子、インジウム原子およびボロン原子から選択される、少なくともガリウム原子を含むIII族原子と、窒素原子とを含む窒化物系化合物半導体であって、前記III族原子の格子間原子を拡散させる拡散促進物質を添加物としてドープしたものである。好ましくは、前記拡散促進物質はリン、砒素、またはアンチモンである。 (もっと読む)


【課題】基板載置領域における基板の位置ずれの発生を抑えることができる真空処理装置を提供する。
【解決手段】真空容器内に設けられ、水平面に沿って回転する回転テーブル2に形成された凹部24の内部に、ウエハWを載置するための載置部材200を着脱自在に設け、該載置部材200に、ウエハWの下面と載置部材200の表面との間の空間と、この空間の外側領域と、の間でガスを通流させるためにウエハWを前記表面から浮かせた状態で保持する突起201を形成する。真空容器の内部にて圧力変動が発生したとしても、ウエハWの下面に処理ガスを速やかに通気させることによって、ウエハWの下面側において局所的にガス圧が高まりウエハWが持ち上がって正常な位置からウエハWが移動してしまう現象の発生を抑える。 (もっと読む)


【課題】軽量かつコンパクトで簡素な構造により、変換器の内部における反射波とプラズマの発生を防止して、放電室において安定したプラズマを発生させることのできる真空処理装置を提供する。
【解決手段】互いに平行に対向し、その間にプラズマ処理が施される基板Sが配置される放電用のリッジ電極21a,21bを有したリッジ導波管からなる放電室2と、この放電室2の長さ方向両端に隣設されて、互いに平行に対向する一対の平板状のリッジ部31a,31bを有したリッジ導波管からなる変換器3A,3Bと、高周波電源5A,5Bと、電源接続用の同軸ケーブル4A,4Bと、変換器3A,3Bの内部において対向するリッジ部31a,31bの間に充填される充填材35とを備え、充填材35は、同軸ケーブル4A,4Bが変換器3A,3Bに接続される電源導入部Cの近傍の範囲で電源導入部Cと同心円の円柱状に設置されてなる構成の真空処理装置とする。 (もっと読む)


【課題】SiC基板に存在するマイクロパイプを、閉塞させることが可能な半導体装置の製造方法を提供することを目的とする。
【解決手段】本発明は、SiC基板10上に、第1のGaN層18を成長させる工程と、第1のGaN層18上に、(横方向成長速度)/(縦方向成長速度)が、第1のGaN層18の成長に比べて小さい条件を用いることで成長された第2のGaN層20を形成する工程と、を有する半導体装置の製造方法である。 (もっと読む)


【課題】電気特性が良好な半導体装置を、生産性高く作製する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する種結晶を形成した後、第2の条件により混相粒を成長させて混相粒の隙間を埋めるように、種結晶上に微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量を50倍以上1000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を67Pa以上1333Pa以下とする条件である。第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体と、水素との流量比を周期的に増減させながら処理室に供給し、且つ処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】ドリフト層とドリフト層に隣接する層との界面の応力を低減して、順方向電圧を低く抑えることができるバイポーラ半導体素子を提供する。
【解決手段】このpinダイオード20は、n型SiCドリフト層23の膜厚の各範囲(300μm以下200μm超),(200μm以下100μm超),(100μm以下50μm超)に対応して、n型SiCバッファ層22の不純物濃度の各上限値(5×1017cm−3),(7×1017cm−3),(10×1017cm−3)が設定されている。これにより、n型SiCドリフト層23とn型SiCバッファ層22との界面の応力を低減でき、順方向電圧を低減できる。 (もっと読む)


【課題】半導体デバイス製造の多層プロセスにおいて、劣悪な平坦性は、ホトリソグラフィー工程で問題を惹起し得る。特に初期の堆積ステップにおける劣悪な平坦性は、半導体デバイス製造のより高い層を通じて増幅される傾向がある。この点を改良した半導体デバイス製造工程初期のブランケット層の堆積方法を提供する。
【解決手段】ガス状の前駆体混合物を形成するためにシリコンソース、ゲルマニウムソース及びエッチャントを混合することを含み、SiGe膜30をブランケット堆積する方法。本方法はさらに、化学気相成長条件下において、ガス状の前駆体物質を基板10上に流し、パターンの有無に関わらず、基板10上にエピタキシャルSiGeを堆積させる方法に依り、平坦性の優れたブランケット層30を堆積する。 (もっと読む)


【課題】比較的低温で成膜しても含有する炭素濃度を多くさせてクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができる成膜方法を提供する。
【解決手段】被処理体Wが収容されて真空引き可能になされた処理容器4内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給して前記被処理体の表面にSiCN膜よりなる薄膜を形成する成膜方法において、前記シラン系ガスと前記窒化ガスと前記炭化水素ガスとをそれぞれ一定の供給期間でパルス状に供給する供給工程と供給を停止する停止工程とよりなる1サイクルを複数回繰り返し実行してプラズマを用いることなく前記薄膜を形成する。これにより、比較的低温で成膜しても含有する炭素濃度を多くさせてクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させる。 (もっと読む)


【課題】石英へのダメージ低減と堆積物の除去速度の向上を両立させるクリーニングを実現する。
【解決手段】基板を収容した処理容器内に処理ガスを供給して基板上に薄膜を形成する工程と、薄膜を形成する工程を所定回数実施した後、処理容器内にクリーニングガスを供給して処理容器内をクリーニングする工程と、を有し、処理容器内をクリーニングする工程では、加熱された大気圧未満の圧力下にある処理容器内にクリーニングガスとして、フッ素含有ガスと、酸素含有ガスと、水素含有ガスとを供給して、処理容器内に付着した薄膜を含む堆積物を熱化学反応により除去するようにした。 (もっと読む)


【課題】従来よりも低温でシリコン含有窒化膜を成膜することができる半導体装置の製造方法を提供する。
【解決手段】ウエハにSiN膜を形成する半導体装置の製造方法であって、ウエハが収容される処理室に、DCS(ジクロロシラン)を供給するシラン系ガス供給工程と、前記シラン系ガスの供給と同時ではないタイミングで、前記処理室にNH(アンモニア)を供給する窒化ガス供給工程と、前記処理室にTEA(トリエチルアミン)を供給するアミン系ガス供給工程と、前記処理室の前記シラン系ガスまたは前記窒化ガスを排気する排気工程と、を有し、前記アミン系ガス供給工程は、前記シラン系ガス供給工程及び前記窒化ガス供給工程と合わせて行う。 (もっと読む)


【課題】デバイス特性に優れたHEMT構造またはMIS(MOS)型HEMT構造の半導体素子を提供する。
【解決手段】基板2の上に少なくともAlを含むIII族窒化物からなる下地層(バッファー層)3を設けた上で、III族窒化物、好ましくはGaNからなる第1の半導体層(チャネル層)4と、少なくともAlを含むIII族窒化物、好ましくはAlxGa1−xNであってx≧0.2である第2の半導体層(電子供給層)6が積層されてなる半導体層群を有する半導体積層構造において、バッファー層3と第1の半導体層4とをMOCVD法で形成し、第2の半導体層6をMBE法で形成する。 (もっと読む)


【課題】性能を向上できるSiC半導体装置の製造方法を提供する。
【解決手段】SiC半導体装置の製造方法は、以下の工程を備える。少なくとも一部に不純物が注入された第1の表面を含むSiC半導体を準備する(ステップS1〜S3)。SiC半導体の第1の表面を洗浄することにより、第2の表面を形成する(ステップS4)。第2の表面上にSi元素を含む膜を形成する(ステップS5)。Si元素を含む膜を酸化することにより、SiC半導体装置を構成する酸化膜を形成する(ステップS6)。 (もっと読む)


【課題】発光層の結晶性低下や、p型半導体層への不純物の混入に起因するp型半導体層の結晶性低下を防ぎ、かつ、高い出力の得られる半導体発光素子およびその製造方法を提供する。
【解決手段】第一有機金属化学気相成長装置において、基板11上に第一n型半導体層12aと第二n型半導体層12bと、井戸層と障壁層とを交互に繰返し積層し、最上面が前記障壁層となる発光層13を形成する第一工程と、第二有機金属化学気相成長装置において、前記発光層の最上面の前記障壁層上に前記障壁層の再成長層13cとp型半導体層14とを順次積層する第二工程と、を具備してなることを特徴とする半導体発光素子の製造方法を採用する。 (もっと読む)


【課題】電気特性が良好な半導体装置を、生産性高く作製する方法を提供する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する第1の微結晶半導体膜を酸化絶縁膜上に形成した後、第2の条件により混相粒を結晶成長させて混相粒の隙間を埋めるように、第1の微結晶半導体膜上に第2の微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を50倍以上1000倍以下にして堆積性気体を希釈し、処理室内の圧力を67Pa以上1333Pa以下とする条件であり、第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を100倍以上2000倍以下にして堆積性気体を希釈し、処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】 処理室内に供給したガスの処理室外の間隙への進入を抑制する。
【解決手段】 反応管の内部に設けられ基板を処理する処理室と、反応管の内部に設けられ処理室を囲い基板を加熱する被誘導体と、反応管の内部に設けられ被誘導体を囲う断熱体と、反応管の外部に設けられ少なくとも被誘導体を誘導加熱する誘導体と、処理室内に第1ガスを供給する第1ガス供給部と、被誘導体と断熱体との間に設けられる第1間隙に第2ガスを供給する第2ガス供給部と、を備える。 (もっと読む)


【課題】結晶性の高い微結晶シリコン膜を作製する方法を提供する。
【解決手段】本発明の微結晶シリコン膜の作製方法は、絶縁膜55上に、第1の条件により第1の微結晶シリコン膜57をプラズマCVD法で形成し、第1の微結晶シリコン膜上に、第2の条件により第2の微結晶シリコン膜59を形成し、第1の条件は、処理室内に供給する原料ガスとしてシリコンを含む堆積性気体と水素が含まれたガスを用い、堆積性気体の流量に対する水素の流量を50倍以上1000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を67Pa以上1333Pa以下とする条件であり、第2の条件は、処理室内に供給する原料ガスとしてシリコンを含む堆積性気体と水素が含まれたガスを用い、堆積性気体の流量に対する水素の流量を100倍以上2000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】比較的低温でも埋め込み特性が良好なアモルファス状態の不純物含有のシリコン膜を形成することが可能な薄膜の形成方法を提供する。
【解決手段】真空排気が可能になされた処理容器14内で被処理体Wの表面に不純物含有のシリコン膜を形成する薄膜の形成方法において、処理容器内へシリコンと水素とよりなるシラン系ガスを該シラン系ガスが被処理体の表面に吸着するような状態で供給する第1のガス供給工程と処理容器内へ不純物含有ガスを供給する第2のガス供給工程とを交互に繰り返し行うことによりアモルファス状態で不純物含有のシリコン膜を形成する。これにより、比較的低温でも埋め込み特性が良好なアモルファス状態の不純物含有のシリコン膜を形成する。 (もっと読む)


【課題】LEDや高電子移動度トランジスタなどのデバイス用として有用なIII−V族窒化物品の提供。
【解決手段】自立III−V族窒化物基板上に堆積したIII−V族窒化物ホモエピタキシャル層を含むホモエピタキシャルIII−V族窒化物品であって、前記III−V族窒化物ホモエピタキシャル層が1E6/cm2未満の転位密度を有しており、(i)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間に酸化物を有するか、(ii)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間にエピ中間層を有するか、
(iii)前記自立III−V族窒化物基板がオフカットされており、前記III−V族窒化物ホモエピタキシャル層が非(0001)ホモエピタキシャルステップフロー成長結晶を含むことを特徴とする。 (もっと読む)


101 - 120 / 552