説明

Fターム[5F083PR43]の内容

半導体メモリ (164,393) | プロセス (23,970) | メモリセルと周辺回路の同時形成 (5,561) | メモリセル (2,770) | ゲート (954)

Fターム[5F083PR43]に分類される特許

41 - 60 / 954


【課題】選択ゲートトランジスタのゲート電極間の間隔の縮小を実現する不揮発性半導体記憶装置を提供する。
【解決手段】実施の形態の不揮発性半導体記憶装置は、半導体基板と、第1の方向に伸長する複数の第1の素子領域と、第1の素子領域を互いに分離する第1の素子分離領域と、第1の方向に伸長する複数の第2の素子領域と、第2の素子領域を互いに分離する第2の素子分離領域と、第1の素子領域と第2の素子領域との間に設けられ、第1および第2の素子領域に接続され、第1の方向と直交する第2の方向に伸長する第3の素子領域と、第1および第3の素子領域上にまたがり、第2の方向に伸長する第1の選択ゲート電極と、第2および第3の素子領域上にまたがり、第1の選択ゲート電極に隣接して平行に配置される第2の選択ゲート電極と、第1および第2の選択ゲート電極間の第3の素子領域に接続されるコンタクト電極を有する。 (もっと読む)


【課題】本発明は、犠牲絶縁膜に形成された孔に導電膜を形成し、その後、犠牲絶縁膜を除去後に、導電膜への炭素成分に起因する残渣の付着を抑制することで、半導体装置の歩留まりを向上可能な半導体装置の製造方法を提供することを課題とする。
【解決手段】炭素成分を含まない原料を用いた成膜方法により、半導体基板の表面に犠牲絶縁膜を形成する工程と、犠牲絶縁膜を貫通する孔を形成する工程と、犠牲絶縁膜のうち、前記孔の側壁部分を覆う導体膜を形成する工程と、犠牲絶縁膜を除去する工程と、を有する。 (もっと読む)


【課題】スプリットゲート構造の不揮発性メモリセルを有する半導体装置において、メモリアレイのレイアウト面積を低減する。
【解決手段】給電領域において、メモリゲートシャント部が形成される領域の素子分離部に溝25が形成されており、選択ゲートシャント部に備わる選択ゲートシャント電極VCは、メモリセル形成領域に形成された選択ゲート電極CGに繋がる第1導電膜からなり、メモリゲートシャント部に備わるメモリゲートシャント電極VMは、給電領域に形成された選択ゲート電極CGの延長部の片側面の一部および素子分離部に形成された溝25の側面の一部に絶縁膜6b,6tおよび電荷蓄積層CSLを介してサイドウォール状に形成され、メモリセル形成領域に形成されたメモリゲート電極MGに繋がる第2導電膜からなる。 (もっと読む)


【課題】選択ゲートトランジスタのゲート電極間の間隔の縮小を実現する不揮発性半導体記憶装置の製造方法を提供する。
【解決手段】実施の形態の不揮発性半導体記憶装置の製造方法は、半導体基板に、複数の第1の素子領域と、素子分離領域と、第2の素子領域を形成する。第1の素子領域上に、メモリセルゲート電極、2本の選択ゲート電極を形成し、第2の素子領域に周辺ゲート電極を形成する。第1の絶縁膜を形成し、周辺ゲート電極の側壁部上が開口される第1のレジストパターンを形成し、第1のエッチング処理を行い、側壁絶縁膜を形成する。第2のレジストパターンを形成し、第2のエッチング処理を行い、選択ゲート電極側壁部の第1の絶縁膜を除去する。第2の絶縁膜を堆積し、第3の絶縁膜を堆積する。2本の選択ゲート電極間上が開口される第3のレジストパターンを形成し、第3のエッチングおよび第4のエッチング処理を行い、コンタクトホールを形成する。 (もっと読む)


【課題】プロセス技術が比較的簡単、且つ、少ない素子数で多値情報を記憶することがでるメモリを提供する。
【解決手段】メモリ素子426において、第1の記憶素子における第1の電極417の形状の一部を、第2の記憶素子における第1の電極417の形状と異ならせることで、第1の電極417と第2の電極420の間の電気抵抗が変化する電圧値を異ならせて、1ビットを越える多値の情報の記憶を一つのメモリセルで行う。第1の電極417を部分的に加工することで単位面積当たりの記憶容量を増大することができる。 (もっと読む)


【課題】スループットを低下させずに異なるメモリセルの誘電体膜とキャパシタの誘電体膜を同時に形成するための半導体装置の製造方法を提供する。
【解決手段】第1酸化膜18、窒化膜19、第2酸化膜20を順に形成した第1の誘電体膜を第1の半導体膜16上に形成する工程と、第1領域I内の第1の誘電体膜21をエッチングする工程と、第1領域Iの半導体基板1の表面に第3酸化膜25を形成する工程と、第1領域VI及び第2領域IIIに開口部28a、28bを有し、さらに第3領域II内の第1の誘電体膜21を覆う形状を有するマスク28を半導体基板1の上方に形成する工程と、マスク28の開口部28a、28bを通して、第1領域VI内の前記第3酸化膜25と前記第2領域III内の第1の誘電体膜21の第2酸化膜20を同時にエッチングする工程を含む。 (もっと読む)


【課題】緻密で高耐圧な絶縁膜を提供することを目的とする。
【解決手段】基板上に半導体膜を有し、半導体膜上に第1の絶縁膜を有し、第1の絶縁膜上に導電膜を有し、導電膜上に第2の絶縁膜を有し、第1の絶縁膜は、第2の絶縁膜よりも緻密であり、第1の絶縁膜は、珪素と、酸素と、窒素とを有する。第1の絶縁膜は、希ガスを有し、その膜厚は、1nm以上100nm以下である。このような第1の絶縁膜はゲート絶縁膜として機能させる。 (もっと読む)


【課題】非晶質炭素膜を用いて形成する電極のアスペクト比を増大させる。
【解決手段】半導体装置の製造方法は、半導体基板上に第1非晶質炭素膜を形成し、周辺回路領域の第1非晶質炭素膜を除去してメモリセル領域の第1非晶質炭素膜を第2非晶質炭素膜とし、第2非晶質炭素膜を覆う第1シリコン酸化膜を基板全面に形成し、第2非晶質炭素膜上の第1シリコン酸化膜を除去して周辺回路領域の第1シリコン酸化膜を第2シリコン酸化膜とし、第2非晶質炭素膜と第2シリコン酸化膜を覆う第1絶縁膜を形成し、第1絶縁膜に第1開口を形成し、第1開口を埋め込む第2絶縁膜を形成し、第2絶縁膜に第2開口を形成し、第2開口と第1開口が重なる位置に露出する第2非晶質炭素膜にホールを形成し、ホール内に下部電極を形成し、第2絶縁膜を除去して第1開口内に第2非晶質炭素膜を露出させ、露出した第2非晶質炭素膜を全て除去する。 (もっと読む)


【課題】選択用トランジスタのゲート電極と記憶用トランジスタのゲート電極との間の耐圧を確保し、かつ閾値電圧の変動が抑制されたMONOS型メモリセルを提供する。
【解決手段】主表面SBSを有する半導体基板SUBと、主表面SBS上に形成された第1のゲート電極CGと、主表面SBS上において第1のゲート電極CGと隣接するように形成された第2のゲート電極MGと、第2のゲート電極MGと半導体基板SUBとに挟まれた領域から、第1のゲート電極CGと第2のゲート電極MGとに挟まれた領域に連なるように延びる第1の絶縁膜ONOとを備える半導体装置である。上記第2のゲート電極MGの最上面MGSは第1のゲート電極CGの最上面CGSより低くなっている。上記第2のゲート電極MGの最上面MGSは主表面SBSに沿うように形成されている。 (もっと読む)


【課題】STIの形成によるウェル拡散層の不純物濃度の変化を抑制し、かつ、ウェル拡散層のドーズロスを抑制した半導体記憶装置およびその製造方法を提供する。
【解決手段】半導体記憶装置は、半導体基板を備える。メモリセル領域には、複数のメモリセルが半導体基板上に形成されている。周辺回路領域には、複数のメモリ素子を制御する複数の半導体素子が形成されている。素子分離領域は、複数のメモリセル間を分離し、あるいは、複数の半導体素子間を分離する。周辺回路領域において半導体素子が形成されているアクティブエリアの不純物濃度は、半導体基板の表面に対して水平方向に素子分離領域の側面からアクティブエリアの内部へ向かって低下している。 (もっと読む)


【課題】DHF処理後に実施されるHPM処理またはAPM処理を、良好に行うことができる半導体装置の製造方法を提供する。
【解決手段】
半導体装置の製造方法は、槽内で、シリコン基板を含むウエハを希フッ酸処理する工程と、槽内に水を導入して、槽内から希フッ酸を排出する工程と、槽内から希フッ酸が排出された後、温水の導入時点が、Hの導入時点と同時かHの導入時点よりも遅くなるように、槽内に、Hと、上記水よりも温度の高い温水とを導入する工程とを有する。 (もっと読む)


【課題】メモリ・ロジック混載型の半導体装置の高性能化を可能にする技術を提供する。
【解決手段】ストッパ膜17は、ストッパ膜13及び層間絶縁膜14から成る絶縁層上に形成されている。コンタクトプラグ16,65,66のそれぞれは、その上面がストッパ膜17から露出するように、ソース・ドレイン領域9,59とそれぞれ電気的に接続されてストッパ膜13、層間絶縁膜14及びストッパ膜17に設けられている。絶縁層20は、ストッパ膜17及びコンタクトプラグ16,65,66の上に設けられている。キャパシタ82の下部電極は、メモリ形成領域において、コンタクトプラグ66の上面とストッパ膜17の上面とに接触するように絶縁層20内に設けられている。 (もっと読む)


【課題】半導体装置の電気的性能および信頼性を向上させる。
【解決手段】スプリットゲート型の不揮発性メモリのメモリゲート電極MGは、金属膜6aと金属膜6a上のシリコン膜6bとの積層膜で形成されたメタルゲート電極であり、金属膜6aの上端部には、金属膜6aの一部が酸化することで金属酸化物部分17が形成されている。スプリットゲート型の不揮発性メモリの制御ゲート電極は、金属膜4aと金属膜4a上のシリコン膜6bとの積層膜で形成されたメタルゲート電極である。 (もっと読む)


【課題】漏洩電流発生を最小化すると同時にオン電流(On current)を増加させ得る二重ゲート電極構造を含む半導体装置及びその製造方法が提供される。
【解決手段】本発明による半導体装置は、基板に配置されるゲート電極と、前記ゲート電極の両端に各々隣接するように前記基板に配置される第1不純物注入領域及び第2不純物注入領域と、前記第1不純物注入領域と前記第2不純物注入領域との間に配置されるチャンネル領域を含み、前記ゲート電極は前記第1不純物注入領域に隣接する第1サブゲート電極と前記第2不純物注入領域に隣接する第2サブゲート電極と、を含み、前記第1サブゲート電極と前記第2サブゲート電極とは前記チャンネル領域の上に配置される。この半導体装置では1つのチャンネル領域が2つのサブゲートによって独立的に制御されて漏洩電流発生を最小化できる。 (もっと読む)


【課題】FMONOSメモリセルとCMOSトランジスタが共存する半導体装置において、トランジスタの駆動電流を高めるとともにFMONOSメモリセルとしての機能を確保する半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、主表面上に形成された、チャネルを有するMONOS型メモリセルと、主表面上に形成されたnチャネル型トランジスタと、主表面上に形成されたpチャネル型トランジスタとを備える半導体装置である。上記MONOS型メモリセル、nチャネル型トランジスタおよびpチャネル型トランジスタの上面に接するように窒化膜CS1、CS2が形成されている。上記窒化膜CS1、CS2はMONOS型メモリセル、nチャネル型トランジスタおよびpチャネル型トランジスタのチャネルに応力を付加する。 (もっと読む)


【課題】半導体基板のセル領域と周辺回路領域との間に段差をなくして、工程を容易かつ単純にしつつ、特に、コンタクトナットオープン(Contact not open)、下部構造物に対するアタック(Attack)などを防止し、工程歩留まり及び信頼性を向上させることができる不揮発性メモリ装置及びその製造方法を提供すること。
【解決手段】周辺回路領域及び該周辺回路領域より高さが低いセル領域を有する半導体基板と、該半導体基板の前記セル領域上に配置され、複数の層間絶縁膜及び複数の制御ゲート電極が交互に積層された制御ゲート構造物と、該制御ゲート構造物が形成された前記半導体基板の前記セル領域を覆う第1の絶縁膜と、該第1の絶縁膜上の選択ゲート電極と、前記半導体基板の前記周辺回路領域上の周辺回路素子とを備えることを特徴とする。 (もっと読む)


【課題】半導体装置の製造後におけるチャージ蓄積用素子からのチャージの放電を防止してデバイス機能素子のチャージダメージを低減する半導体装置及びその製造方法を提供する。
【解決手段】 半導体基板上に形成されたデバイス機能素子と、半導体基板上に形成されたチャージ蓄積用素子と、半導体基板上に形成され、デバイス機能素子とチャージ蓄積用素子との間に接続され、電気的に書き換え可能な不揮発性メモリトランジスタにより形成された分離用素子とを有する。 (もっと読む)


【課題】SRAMのメモリセルにおける配線を確実に形成することがきて、電気的な接続が良好に行われる半導体装置を提供する。
【解決手段】半導体装置におけるSRAMのメモリセルでは、アクセストランジスタT1のゲート配線部GHA1に電気的に接続されるコンタクトプラグCPS1に対して、ワード線としての第3配線M32に電気的に接続されることになるヴィアVS1が直接接続されている。また、アクセストランジスタT2のゲート配線部GHA2に電気的に接続されるコンタクトプラグCPS2に対して、ワード線としての第3配線M32に電気的に接続されることになるヴィアVS2が直接接続されている。 (もっと読む)


【課題】不揮発性メモリおよび容量素子を有する半導体装置の性能を向上させる。
【解決手段】同一の半導体基板1上に、不揮発性メモリのメモリセルMCと容量素子とが形成されている。メモリセルMCは、半導体基板の上部に絶縁膜3を介して形成された制御ゲート電極CGと、半導体基板1の上部に形成されて制御ゲート電極CGと隣合うメモリゲート電極MGと、メモリゲート電極MGと半導体基板1との間および制御ゲート電極CGとメモリゲート電極MGとの間に形成されて内部に電荷蓄積部を有する絶縁膜5とを有している。容量素子は、制御ゲート電極CGと同層のシリコン膜で形成された下部電極と、絶縁膜5と同層の絶縁膜で形成された容量絶縁膜と、メモリゲート電極MGと同層のシリコン膜で形成された上部電極とを有している。そして、上部電極の不純物濃度は、メモリゲート電極MGの不純物濃度よりも高くなっている。 (もっと読む)


【課題】従来のDRAMでは、ビット線をキャパシタとセルトランジスタの間に形成するため、構造が複雑であったり、回路の特性を犠牲にしたりする必要があり、集積化の面で大きな障害となっている。
【解決手段】キャパシタの一方の電極をビット線に接続し、他方の電極をセルトランジスタのドレインに接続する。また、セルトランジスタのソースは、ソース線に接続される。この結果、例えば、スタック型キャパシタを採用する場合には、キャパシタの電極の一方をビット線の一部とすることができる。ソース線は、半導体基板上に形成された不純物領域や、ワード線に平行な配線を用いることができるので、構造が単純となる。 (もっと読む)


41 - 60 / 954