説明

Fターム[5F083PR43]の内容

半導体メモリ (164,393) | プロセス (23,970) | メモリセルと周辺回路の同時形成 (5,561) | メモリセル (2,770) | ゲート (954)

Fターム[5F083PR43]に分類される特許

121 - 140 / 954


【課題】シリサイド工程による不具合を抑制しつつ、十分な量のシリサイドを形成することのできる不揮発性半導体記憶装置の製造方法を提供する。
【解決手段】不揮発性半導体記憶装置の製造方法は、浮遊ゲート電極、浮遊ゲート電極上の第1の電極間絶縁膜及び第1の電極間絶縁膜上の制御ゲート電極を有するメモリセルトランジスタを形成し、下側ゲート電極、第2の電極間絶縁膜及び第2の電極間絶縁膜上の上側ゲート電極を有する電界効果トランジスタを形成する。制御ゲート電極及び上側ゲート電極の上面が露出するように層間絶縁膜を形成する。制御ゲート電極及び上側ゲート電極の上面が層間絶縁膜の上面よりも低くなるようにエッチバックする。制御ゲート電極、上側ゲート電極及び層間絶縁膜上の全面に第1の導電膜を形成する。第1の層間絶縁膜をエッチバックする。制御ゲート電極、上側ゲート電極及び第1の導電膜上に金属を堆積してシリサイド化する。 (もっと読む)


【課題】メモリセル領域と周辺回路領域の双方におけるMOSトランジスタの最適化が可能な半導体装置の製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、サイドウォールを側壁に有するゲート電極を含むMOSトランジスタを、半導体基板1上のメモリセル領域及び周辺回路領域に備えた半導体装置の製造方法であって、前記サイドウォールを形成した後に、選択エピタキシャル成長法により、前記半導体基板1上面にシリコン層10を形成する工程を備え、前記シリコン層10を形成した後に、少なくとも前記周辺回路領域をマスク20bで覆い、エッチングにより、前記メモリセル領域内のMOSトランジスタTr1のサイドウォール9cを薄化する工程を採用する。 (もっと読む)


【課題】容量絶縁膜である強誘電体のアニール工程を経ても、PchMOS型トランジスタのVth変動を抑制することができる半導体記憶装置およびその製造方法を提供すること。
【解決手段】半導体基板1上に形成され、P型不純物が導入されたゲート電極を有するPchMOS型トランジスタ4と、前記PchMOS型トランジスタ4の上方を覆うように、前記半導体基板1上に形成された第1の水素バリア膜8と、前記第1の水素バリア膜8上に形成され、容量絶縁膜として強誘電体を用いた強誘電体キャパシタ7と、前記強誘電体キャパシタ7の上方および側方を覆い、前記強誘電体キャパシタ7の周縁部において前記第1の水素バリア膜8と接続する第2の水素バリア膜14とを備え、前記第1の水素バリア膜8は、シリコン元素、水素元素、およびシリコン元素よりも水素元素を脱離しにくい第3の元素を含む。 (もっと読む)


【課題】回路サイズを減少させることを可能にする。
【解決手段】素子分離領域102によって分離された、隣接する第1導電型の第1半導体領域101aおよび第2導電型の第2半導体領域101cと、第1半導体領域101a上に設けられた不揮発性メモリセルトランジスタ10と、第2半導体領域101c上に設けられ、第1半導体領域101aに設けられた第1ドレイン領域10bと電気的に接続されたゲート電極20C2とを有するパストランジスタ20と、第1半導体領域101aに設けられ第1半導体領域に基板バイアスを印加する第1電極8と、第2半導体領域101cに設けられ第2半導体領域に基板バイアスを印加する第2電極9と、を備えている。 (もっと読む)


【課題】工程数を増加させることなく、高耐圧トランジスタへのイオン注入を的確に実行することを可能にする。
【解決手段】
第1素子形成領域(AA1)のうち、第1トランジスタ(Tr1)のゲート電極が形成されるべき第1領域(R1’)の直上に位置するマスク材(M1)の第1部分(H1’)を除去する一方、第1部分(H1’)以外の第1素子形成領域(AA1)にはマスク材(M1)を残存させる。一方、第2素子形成領域(AA2)のうち、第2トランジスタ(Tr2)のゲート電極が形成されるべき第2領域(R1)の直上に位置するマスク材の少なくとも第2部分(H1)と、第2トランジスタ(Tr1)のソース/ドレイン拡散領域が形成されるべき第3領域(R2、R3)の直上に位置するマスク材の少なくとも第3部分(H2,H3)とを除去してマスク材の開口を形成する。 (もっと読む)


【課題】周辺回路領域の素子の寿命が劣化するのを抑制しつつ、浮遊ゲート電極と制御ゲート電極とのカップリング性を確保する。
【解決手段】シリコン基板11は、セル領域および周辺回路領域が設けられている。トンネル絶縁膜12は、セル領域および周辺回路領域のシリコン基板11上に形成されている。浮遊ゲート電極膜13は、セル領域および周辺回路領域のトンネル絶縁膜12上に形成されている。電極間絶縁膜16は、セル領域の浮遊ゲート電極膜13上に形成されている。シリコン酸化膜14および電極間絶縁膜16は、周辺回路領域の浮遊ゲート電極膜13上に形成されている。制御ゲート電極膜17は、セル領域および周辺回路領域の電極間絶縁膜16上に形成されている。 (もっと読む)


【課題】ラインパターン構造物の形成方法を提供すること。
【解決手段】ラインパターン構造物及びその形成方法において、ラインパターン構造物は切断部位を含むライン形状を有する少なくとも1つの第1ラインパターンを含む。最外郭に位置する前記第1ラインパターンと隣り合って前記第1ラインパターンと平行した延在ラインと、前記第1ラインパターンの切断部位と隣接する領域で前記第1ラインパターン方向へ向かうように前記延在ラインから突出された少なくとも1つの突出パターンを含む2つの第2ラインパターンを含む。前記ラインパターン構造物は不良が減少し、簡単な工程を通じて形成されてもよい。 (もっと読む)


【課題】 不揮発記憶保持用途の電界効果トランジスタと、論理演算用途の電界効果トランジスタの製造工程を別々に設けることなく前記2用途の電界効果トランジスタを同一半導体基板上に同一構造に作製できるようにする。
【解決手段】 ゲート絶縁構造体12に記憶保持材料を含むnおよびpチャネル型電界効果トランジスタで半導体集積回路のメモリ回路とロジック回路の両方を構成し、ゲート絶縁構造体に記憶保持材料を含むnおよびpチャネル型電界効果トランジスタのゲート-基板領域間に印加する電圧の大きさと印加タイミングを制御することによって、論理演算状態と記憶書込み状態と不揮発記憶保持状態を電気的に切り替える。 (もっと読む)


【課題】周辺回路の抵抗素子の抵抗部の厚さに依らずにメモリセルトランジスタの浮遊ゲートの厚さを自由に設定することのできる半導体装置、およびその製造方法を提供すること。
【解決手段】基板上の抵抗素子およびスタックド・ゲート型のメモリセルトランジスタを含む半導体装置を提供する。前記抵抗素子は、抵抗として機能しない非導通層、および前記非導通層上に第1の絶縁膜を介して形成された抵抗として機能する導通層を含む。前記メモリセルトランジスタは、第1の浮遊ゲートを含む浮遊ゲートを有する。前記非導通層と前記第1の浮遊ゲートは、同じ材料からなる。 (もっと読む)


【課題】シリサイド層をゲート電極の一部に含む不揮発性半導体記憶装置において、シリサイド層の膜厚を制御することができる不揮発性半導体記憶装を提供する。
【解決手段】不揮発性半導体記憶装置は、チャネル半導体層上に、ゲート絶縁膜12、浮遊ゲート電極膜13、電極間絶縁膜14および制御ゲート電極15が順に積層されるメモリセルトランジスタMTを有する。制御ゲート電極15は、電極間絶縁膜14上に、半導体膜151、シリサイド相変化抑制膜152およびシリサイド膜154を順に積層した構造を有する。また、シリサイド相変化抑制膜152は、C,F,Nのうちの少なくともいずれか1つの元素が、1×1020〜5×1021[atom/cm3]の濃度範囲で添加された多結晶シリコン膜によって構成される。 (もっと読む)


【課題】メモリセル領域でシリサイドの成長速度を抑制しつつ、周辺回路領域では十分な量のシリサイドを形成することのできる不揮発性半導体記憶装置及びその製造方法を提供する。
【解決手段】不揮発性半導体記憶装置は、半導体基板と、メモリセル領域に形成されたメモリセルトランジスタと、周辺回路領域に形成された電界効果トランジスタとを備える。メモリセルトランジスタは、半導体基板上に第1のゲート絶縁膜を介して形成された浮遊ゲート電極と、浮遊ゲート電極上に配置される第1の電極間絶縁膜と、第1の電極間絶縁膜上に配置される制御ゲート電極とを有する。制御ゲート電極は、積層された複数の導電膜により形成される。制御ゲート電極は、積層された複数の導電膜間の界面のうちの少なくとも1つに形成され金属原子の拡散を抑制するバリア膜を有する。制御ゲート電極は、その一部がシリサイド化されている。 (もっと読む)


【課題】高集積化が可能な半導体装置、その製造方法を提供する。
【解決手段】半導体素子は、素子領域内の半導体基板11に離間して設けられた1対の第2拡散層215と、1対の第2拡散層215間の素子領域表面上に設けられた第1絶縁膜111bと、第1絶縁膜111b上に設けられた第1ゲート電極112bとを備える。また、第1ゲート電極112bのゲート幅方向に関して素子領域上から溝型素子分離絶縁膜12上に延在するように第1ゲート電極112bの一部上に設けられた第2絶縁膜113bと、第1ゲート電極112b上および第2絶縁膜113b上に設けられた第2のゲート電極114bとを備える。第2のゲート電極114bは、ゲート幅方向の少なくとも一方側の端部が溝型素子分離絶縁膜12上の第2絶縁膜113bに対して素子領域側に後退している。 (もっと読む)


【課題】半導体装置の製造方法において、半導体装置の小型化を図ること。
【解決手段】第1の領域IにフラッシュメモリセルFLを形成する工程と、第2の領域IIにキャパシタQの第1の電極11aを形成する工程と、第2の絶縁膜14として第1の酸化シリコン膜14a、窒化シリコン膜14b、及び第2の酸化シリコン膜14cをこの順に形成する工程と、第1の電極11aの一部領域CRにおける窒化シリコン膜14bと第2の酸化シリコン膜14cとを除去する工程と、第3の領域IIIHにおける第1の絶縁膜10と第2の絶縁膜14とをウエットエッチングする工程と、キャパシタQの第2の電極30aを形成する工程と、一部領域CRにおける第1の酸化シリコン膜14aをエッチングして除去する工程とを有する半導体装置の製造方法による。 (もっと読む)


【課題】キャパシタを形成する領域の占有面積を縮小する。
【解決手段】本実施形態の半導体装置は、半導体基板10内に設けられた半導体領域AACと、半導体領域AAC内に設けられる複数のキャパシタCm,Cnを含むキャパシタ群と、を具備し、キャパシタCm,Cnのそれぞれは、半導体領域AAC上のキャパシタ絶縁膜42Aと、キャパシタ絶縁膜42A上のキャパシタ電極34Am,34Amと、キャパシタ電極34Am,34Amに隣接する拡散層32Aとを有し、を有し、キャパシタ電極34Am,34Anに接続される配線29m,29nのそれぞれは、キャパシタCm,Cn毎に電気的に分離され、キャパシタ電極Cm,Cnのそれぞれに異なる電位Vm,Vnが印加されている。 (もっと読む)


【課題】フローティングゲートとコントロールゲートとが積層されたスタック構造のゲート電極を有する半導体装置に関し、隣接メモリセル間やメモリセルとビット線との間における短絡不良を防止しうる半導体装置及びその製造方法を提供する。
【解決手段】トンネルゲート絶縁膜22上に、第1の幅を有する導電膜24、ONO膜28、コントロールゲート40を形成する。コントロールゲート40をマスクとして導電膜24をエッチングしてフローティングゲート26を形成した後、層間絶縁膜80を形成し、第1の方向の幅が第1の幅よりも広いコンタクトホール84を形成する。その後、コンタクトホール84の内壁に、サイドウォールスペーサ88を形成する。 (もっと読む)


【課題】複数の容量を互いに直列接続して一つの昇圧容量を形成した場合の中間ノードの帯電に起因するデバイス破壊を回避するとともに、当該中間ノードのリークパスを介して流れるリーク電流に起因するポンプ効率の低下を回避する。
【解決手段】チャージポンプ回路(1307)は、第1静電容量(Ca)とそれに直列接続された第2静電容量(Cb)とを含む昇圧容量(C(x−1),Cx)と、容量ドライバ(DRV(x−1),DRVx)と、保護回路(D1,D2)とを含む。上記保護回路は、上記昇圧電圧が形成されない状態においては導通状態とされて、上記第1静電容量と上記第2静電容量との直列接続ノードの蓄積電荷を放電し、上記昇圧電圧が形成される状態においては非導通状態を維持する。これにより、昇圧容量の耐圧緩和を図り、また、ポンプ効率の低下を回避する。 (もっと読む)


【課題】選択ゲート電極の側壁にメモリゲート電極を有する不揮発性記憶装置を微細化することができる技術を提供する。
【解決手段】選択ゲート電極CGをダミーパターンの側壁にサイドウォール形状で形成することで、メモリゲート電極MGが選択ゲート電極CGの両壁に形成されなくなり、フォトマスクの位置ずれを考慮する必要がなくなる。また、選択ゲート電極CGをサイドウォール状に形成することで、選択ゲート電極CGのゲート長が縮小しても、選択ゲート電極CGを構成する導電膜の膜厚により精度よく制御することを可能とする。 (もっと読む)


【課題】簡便な方法でキャパシタ容量の増大を図り、また、キャパシタと同層に形成されるコンタクトプラグの製造を容易とする。
【解決手段】メモリセル部の層間絶縁膜(10,20)にバリア膜とメタル膜の二層構造のコンタクトプラグをいったん形成し、その上に層間絶縁膜(21,22)を積層し、コンタクトプラグ上面を露出する開口を形成し、メタル膜を選択的に除去した後、残存するバリア膜と一体となったキャパシタの下部電極を形成する。周辺回路部では、上層配線31と下層配線6Bとを接続するコンタクトプラグを2段(41、42)とする。 (もっと読む)


【課題】ゲートコンタクトプラグ形成のためのコンタクトホールの深さを適切に制御可能とする。
【解決手段】半導体装置1は、活性領域ARを囲む第1の絶縁体ピラー21と、第1の絶縁体ピラー21の活性領域AR側の側面21sとy方向に相対向する側面22sを有する第2の絶縁体ピラー22と、第1及び第2の絶縁体ピラー21,22の上面を覆う絶縁膜31と、第1のゲート電極16と電気的に接続し、かつ少なくとも側面21s,22sを覆う第2のゲート電極23と、底面に絶縁膜31及び第2のゲート電極23が露出したコンタクトホールの内部に設けられ、かつ第2のゲート電極23の上面と電気的に接続するゲートコンタクトプラグ42とを備え、側面21s,22s間の距離は、ゲートコンタクトプラグ42のx方向の長さより短く、ゲートコンタクトプラグ42は側面21s,22s間の領域で第2のゲート電極23と電気的に接続する。 (もっと読む)


【課題】トレンチ内に埋め込まれたシリコン層と複数のトレンチ間の半導体基板上に形成されたシリコン層とを同じイオン注入を行ない導電層とすること。
【解決手段】半導体基板10に複数のトレンチ30と、前記複数のトレンチ間の前記半導体基板上に第1キャパシタ絶縁膜22を介し第1シリコン層24と、を形成する工程と、前記複数のトレンチ内に埋め込み絶縁膜36を埋め込む工程と、前記埋め込み絶縁膜を前記複数のトレンチの側面に第2キャパシタ絶縁膜33が残存するように除去し、前記埋め込み酸化膜内に凹部を形成する工程と、前記凹部内の前記第2キャパシタ絶縁膜上と前記複数のトレンチ間の前記第1シリコン層上とに第2シリコン層40を直接形成する工程と、前記凹部内および前記第1キャパシタ絶縁膜上に形成された前記第2シリコン層内に不純物を同時にイオン注入する工程と、を含むことを特徴とする半導体装置の製造方法。 (もっと読む)


121 - 140 / 954