説明

Fターム[5F092BB66]の内容

ホール/MR素子 (37,442) | MR素子の材料 (13,747) | 磁区制御層(縦バイアス層) (301) | 合金(Fe、Co、Ni系と他の金属) (230)

Fターム[5F092BB66]に分類される特許

1 - 20 / 230


【課題】向上した磁気性能および堅牢性を有する磁気読み出しセンサを提供する。
【解決手段】磁気センサは、磁化自由層構造310と磁化固定層構造とを含む。磁化固定層構造は、非磁性結合層318によって互いに分離させた第1の磁性層314および第2の磁性層316を含む。磁化固定層構造の第2の磁性層はCoFeBTaの層を含んでおり、この層が原子の拡散を防止し、さらには所望のBCC結晶粒成長を促進する。磁化自由層構造は、原子拡散をさらに防止し、所望のBCC粒成長をさらに促進するためのかかるCoFeBTa層を含むこともできる。 (もっと読む)


【課題】 シザーズ構造を有する磁気抵抗センサの磁気バイアス構造を提供する。
【解決手段】 磁気バイアス付与の堅牢性を向上させる新規のハードバイアス構造を有するシザーズ型磁気センサ。当該センサは、電気絶縁障壁層または導電スペーサ層等の非磁性層により分離された第1の磁気層および第2の磁気層を含むセンサスタックを含む。第1の磁気層および第2の磁気層は、逆平行に結合されるが、磁気バイアス構造により、エアベアリング面に対して平行でも垂直でもない方向に傾けられた磁化方向を有する。磁気バイアス構造は、センサスタックの後縁から延在し、センサスタックの第1の側面および第2の側面に整列した第1の側面および第2の側面を有するネック部を含む。バイアス構造はまた、ネック部から後方に延在する先細または楔形部を含む。 (もっと読む)


【課題】 熱マグノンによるスピントルク発振素子を提供する。
【解決手段】 「熱マグノンによる」スピントルク発振素子(STO)は、熱流のみを用いて、スピントルク(ST)効果を惹起しかつ自由層磁化の持続的な振動を発生させる。熱マグノンによるSTOは、従来型の自由層および基準層に加えて、さらに、固定された面内磁化を有する磁性酸化物層と、その磁性酸化物層の1つの表面上の強磁性金属層と、自由層および金属層間の非磁性導電層と、磁性酸化物層のもう一方の表面上の電気抵抗性ヒータとを含む。熱マグノン効果のために、金属層と伝導層と自由層とを通る磁性酸化物層からの熱流によって、最終的に、自由層に対するスピン移行トルク(STT)が生じる。熱流と反対方向に流れるセンス電流が、自由層磁化の振動周波数を監視するために用いられる。 (もっと読む)


【課題】十分に高い抵抗変化率および絶縁破壊電圧を確保しつつ、安定した製造に適した磁気トンネル接合素子を備えた磁気メモリ構造を提供する。
【解決手段】この磁気メモリ構造は、基体上に、第1シード層と導電層とを順に有する下部電極と、導線としての上部電極と、下部電極と上部電極との間に配置され、かつ、下部電極の側から順に、下部電極と接すると共に窒化タンタルを含む第2シード層と、反強磁性ピンニング層と、ピンド層と、トンネルバリア層と、磁化自由層と、上部電極と接するキャップ層とを有する磁気トンネル接合素子とを備える。窒化タンタルは、窒素プラズマをタンタルのターゲットに衝突させる反応性スパッタリング処理によって形成されたものである。 (もっと読む)


【課題】小さい磁気ヒステリシス、高い線形性、及び高い検出感度を併せ持つ電流センサを提供すること。
【解決手段】磁化方向が略固定された強磁性固定層及び外部磁界に対して磁化方向が変動するフリー磁性層を含んで構成された複数の磁気検出部(32)と、前記フリー磁性層にバイアス磁界を印加するハードバイアス層を含んで構成された複数の永久磁石部(33)と、が交互に接して配置された磁気抵抗効果素子(12a、12b)を備え、隣接する前記永久磁石部(33)の間隔が20μm〜100μmであることを特徴とする。 (もっと読む)


【課題】本発明は、磁気減衰自由層を備えたスピントルク発振器(STO)を提供する。
【解決手段】スピントルク発振器(STO)は、発振自由強磁性層の磁気減衰を増加させる。ギルバート磁気減衰パラメータ(α)は、少なくとも0.05、好ましくは0.05より大きい。自由層は、任意のタイプの従来の強磁性材料であってもよいが、ドーパントとして1つまたは複数の減衰元素を含む。減衰元素は、Pt、Pdおよび15のランタニド元素からなる群から選択される。自由層減衰は、自由層に隣接する減衰層によって増加させてもよい。減衰層の一タイプは、Mn合金のような反強磁性材料であってもよい。反強磁性減衰層に対する変更例として、二重層減衰層を、反強磁性減衰層と、自由層および反強磁性層間の非磁性金属導電分離層とで形成してもよい。別のタイプの減衰層は、Pt、Pdおよびランタニドから選択された元素の1つまたは複数で形成された層であってもよい。 (もっと読む)


【課題】望ましくない磁束から磁気抵抗(MR)素子を保護することができる磁気シールドを提供する。
【解決手段】磁気抵抗(MR)リーダ192は、空気軸受面(ABS)から第1の距離を延在する少なくとも1つのシールド194,196に近接する。シールドは、MRリーダに接触するように近接し、ABSから第1の距離未満である第2の距離を延在する、安定化構造200を有する。安定化構造はMRリーダと一致する面積範囲を有する。 (もっと読む)


【課題】改善された硬質磁性体バイアス構造を備える面垂直電流(CPP)磁気抵抗(MR)センサを提供する。
【解決手段】磁気記録ディスクドライブ用CPP−GMR又はCPP−TMR読み出しヘッドのための硬質磁性体バイアス構造が、2つのセンサシールドS1、S2間に位置し、センサの自由層110の側縁に隣接している。絶縁層116は、バイアス構造と下部シールドとの間、及び自由層110の側縁の間に位置する。バイアス構造150は、Ir又はRuのシード層114と、そのシード層114上の強磁性で化学的配列が規則付けられたFePt合金ハードバイアス層115と、そのFePt合金ハードバイアス層115上のRu又はRu/Irキャッピング層118とを含む。FePt合金は、そのc軸が全般的に層の平面内にある面心正方構造を有する。 (もっと読む)


【課題】スペーサ層に隣接する磁性層の酸化を防止し、かつ大きなMR変化率を実現する。
【解決手段】磁気抵抗効果素子は、外部磁界に応答して磁化方向のなす相対角度が変化する第1及び第2の磁性層L1,L2と、第1の磁性層L1と第2の磁性層L2との間に位置するスペーサ層16と、を有している。第1の磁性層L1は、磁気抵抗効果素子が形成される基板に対し、第2の磁性層L2よりも近い側に位置している。スペーサ層16は、酸化ガリウムを主成分とする主スペーサ層16bと、主スペーサ層16bと第1の磁性層L1との間に位置し、一部が酸化された銅を主成分とするボトム層16aと、を有している。 (もっと読む)


【課題】面積抵抗のばらつきを抑えつつ、大きなMR変化率を実現する。
【解決手段】磁気抵抗効果素子4は、外部磁界に対して磁化方向のなす相対角度が変化する第1及び第2の磁性層L1,L2と、第1の磁性層L1と第2の磁性層L2との間に位置するスペーサ層16と、を有している。スペーサ層16は、酸化ガリウムを主成分とし、マグネシウム、亜鉛、インジウム、及びアルミニウムからなる群から選択された少なくとも1つの金属元素を含む主スペーサ層16bを有している。 (もっと読む)


【課題】スペーサ層に隣接する磁性層の酸化を防止し、かつ大きなMR変化率を実現する。
【解決手段】磁気抵抗効果素子4は、外部磁界に応答して磁化方向のなす相対角度が変化する第1及び第2の磁性層L1,L2と、その間に位置するスペーサ層16と、を有している。第1の磁性層は、磁気抵抗効果素子4が形成される基板に対し、第2の磁性層よりも近い側に位置している。スペーサ層16は、銅層16aと、金属中間層16bと、酸化ガリウムを主成分とする主スペーサ層16cと、を有し、銅層及び金属中間層が主スペーサ層と第1の磁性層との間に位置し、金属中間層は銅層と主スペーサ層との間に位置している。金属中間層は、マグネシウムまたは少なくとも一部が酸化されたマグネシウム、アルミニウムまたは少なくとも一部が酸化されたアルミニウム、及び亜鉛または少なくとも一部が酸化された亜鉛からなる群から選択された少なくとも一つを主成分としている。 (もっと読む)


【課題】スペーサ層に隣接する磁性層の酸化を防止し、かつ大きなMR変化率を実現する。
【解決手段】磁気抵抗効果素子4は、外部磁界に対して磁化方向のなす相対角度が変化する第1及び第2の磁性層L1,L2と、第1の磁性層L1と第2の磁性層L2との間に位置するスペーサ層16と、を有している。第1の磁性層L1は、磁気抵抗効果素子4が形成される基板に対し、第2の磁性層L2よりも近い側に位置し、スペーサ層16は、酸化ガリウムを主成分とする主スペーサ層16bと、主スペーサ層16bと第1の磁性層L1との間に位置し、銅とガリウムとを含む第1の非磁性層16aと、を有している。 (もっと読む)


【課題】ハードバイアス層用の改善されたシード層構造を備えた面垂直電流(CPP)磁気抵抗(MR)センサを提供する。
【解決手段】面垂直電流(CPP)磁気抵抗(MR)センサ100は、センサの自由強磁性層に縦にバイアスをかけるために用いられる強磁性体ハード(高保磁力)バイアス層用の改善されたシード層構造114を有する。シード層構造114は、タンタル(Ta)の第1のシード層114aと、Ta層114a上でそれに接するチタン(Ti)およびTi酸化物の一方または両方の第2のシード層114bと、第2のシード層114b上でそれに接するタングステン(W)の第3のシード層114cと、からなる3層である。 (もっと読む)


【課題】フリー層を安定化するハードバイアス構造を備えたCPP−MRセンサを提供する。
【解決手段】本発明のCPP−MRセンサは、ハードバイアス構造4と、そのハードバイアス構造4によって水平方向にバイアス磁界が付与されたフリー層8を有するMRスタック6とを備える。ハードバイアス構造4は、シード層4A、FePt含有磁性層4B、およびキャップ層4Cを順に有する。 (もっと読む)


【課題】絶縁構造を改良した平面垂直通電型(CPP)磁気抵抗(MR)センサを提供する。
【解決手段】CPP MRディスク・ドライブ読取りヘッドなどの平面垂直通電型(CPP)磁気抵抗(MR)センサは、センサを構成する層のスタックを囲む改良絶縁構造を有する。センサは、センサの側縁上で、およびセンサの強磁性バイアス層の下でセンサに隣接する下遮蔽層の領域上で、約1〜5nmの厚さを有する第1の窒化ケイ素層を有する。センサは、センサの後縁上で、およびセンサ後縁に隣接する下遮蔽層の領域上で、約2〜5nmの厚さを有する第2の窒化ケイ素層と、第2の窒化ケイ素層上の実質的により厚い金属酸化物層とを有する。絶縁構造は、センサの周辺で縁損傷を防止し、従って、実質的に小さい寸法を有するCPP MR読取りヘッドの製造を可能にする。 (もっと読む)


【課題】 特に、感度軸が直交する2種類の磁気抵抗効果素子を同じチップ上に形成可能とした磁気センサを提供することを目的とする。
【解決手段】 同じセンサチップに第1磁気抵抗効果素子15と第2磁気抵抗効果素子16が設けられており、各磁気抵抗効果素子は、フリー磁性層と固定磁性層とが非磁性層を介して積層された素子部と、前記素子部に対してバイアス磁界を供給するためのハードバイアス層を有する。各素子部の固定磁性層は、第1磁性層と第2磁性層とが非磁性中間層を介して積層され、第1磁性層と第2磁性層とが反平行に磁化固定されたセルフピン止め構造である。第1磁気抵抗効果素子の第1素子部の磁化固定方向と第2磁気抵抗効果素子の第2素子部の磁化固定方向は直交している。第1ハードバイアス層及び第2ハードバイアス層は、同じ着磁方向であるが各素子部に供給されるバイアス磁界は直交している。 (もっと読む)


【課題】磁気抵抗効果素子の抵抗値を適当な大きさにし、且つMR変化率を十分に大きくする。
【解決手段】MR素子5は、第1の強磁性層(自由層55)と、第2の強磁性層(固定層53)と、第1の強磁性層と第2の強磁性層との間に配置されたスペーサ層54とを備えている。スペーサ層54は、順に積層された非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543を有している。非磁性金属層541は、Cuよりなり、0.3〜1.5nmの範囲内の厚みを有している。第1の酸化物半導体層542は、Ga酸化物半導体よりなり、0.5〜2.0nmの範囲内の厚みを有している。第2の酸化物半導体層543は、Zn酸化物半導体よりなり、0.1〜1.0nmの範囲内の厚みを有している。 (もっと読む)


【課題】膜面垂直通電(CPP)読み取りセンサの縦バイアス積層構造を提供する。
【解決手段】CPP読み取りセンサの検知層構造を安定化させるための、改良された縦バイアス積層構造を有する読み取りヘッドが提供される。縦バイアス積層構造は、2つの側部領域の各々において、絶縁層によってCPP読み取りセンサから分離され、絶縁層とCPP読み取りセンサとともに、読み取りヘッド内の上側および下側強磁性シールドの間に挟まれる。本発明の好ましい実施形態において、縦バイアス積層構造は主として、Fe−Pt縦バイアス層を含み、シード層を持たないため、絶縁層のみの厚さで、Fe−Pt縦バイアス層とCPP読み取りセンサの間の間隔が決定される。シード層を持たないFe−Pt縦バイアス層は、アニーリング後に良好な膜面内の硬磁性を呈し、間隔が狭いため、この安定化方式は有効である。 (もっと読む)


【課題】高いMR比のTMRリード・ヘッドを実現する。
【解決手段】本発明の一実施形態において、TMRリード・ヘッドにおいて、固定層の第1強磁性層は反平行結合層と絶縁障壁層との間に形成されている。第1強磁性における反平行結合層との界面を形成する層を、CoxFe(0≦x≦15)で形成する。これにより、薄い反平行結合層を使用しても高温でのアニール処理における固定層の不安定化を抑えることができ、第1強磁性層と第2強磁性層との強い結合を維持することができる。第1強磁性層において、主強磁性層とCoxFe(0≦x≦15)界面層との間に、Co系アモルファス金属層を形成する。これにより、高温アニール処理における第1強磁性層の適切な結晶化を促進することができ、高いMR比を実現する。 (もっと読む)


【課題】
積層された反強磁性層と固定層からなる交換結合膜、それを有する磁気抵抗効果ヘッド、磁気センサおよび磁気メモリにおいて、反強磁性層と固定層間の交換結合エネルギーを増大し、固定層の磁化の安定性を高める。
【解決手段】
反強磁性層12と固定層13とが積層され、前記反強磁性層12により前記固定層13の磁化方向が一方向に磁気的に固定されている交換結合膜10、それを有する磁気抵抗効果ヘッド、磁気センサおよび磁気メモリにおいて、前記反強磁性層12をMn-X(X=Ir,Rh,Ru)で構成するとともに、前記固定層13の主成分をCo-Fe-Mnで構成する。 (もっと読む)


1 - 20 / 230