説明

スペーサ層を含むCPP型磁気抵抗効果素子

【課題】磁気抵抗効果素子の抵抗値を適当な大きさにし、且つMR変化率を十分に大きくする。
【解決手段】MR素子5は、第1の強磁性層(自由層55)と、第2の強磁性層(固定層53)と、第1の強磁性層と第2の強磁性層との間に配置されたスペーサ層54とを備えている。スペーサ層54は、順に積層された非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543を有している。非磁性金属層541は、Cuよりなり、0.3〜1.5nmの範囲内の厚みを有している。第1の酸化物半導体層542は、Ga酸化物半導体よりなり、0.5〜2.0nmの範囲内の厚みを有している。第2の酸化物半導体層543は、Zn酸化物半導体よりなり、0.1〜1.0nmの範囲内の厚みを有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録装置、発振器、磁気抵抗ランダムアクセスメモリ(MRAM)、磁気センサー等に用いられる磁気抵抗効果素子、ならびに磁気抵抗効果素子を有する薄膜磁気ヘッド、ヘッドアセンブリおよび磁気記録装置に関する。
【背景技術】
【0002】
近年、磁気ディスク装置等の磁気記録装置の面記録密度の向上に伴って、薄膜磁気ヘッドの性能向上が求められている。薄膜磁気ヘッドとしては、基板に対して、読み出し用の磁気抵抗効果素子(以下、MR(Magnetoresistive)素子とも記す。)を有する再生ヘッドと書き込み用の誘導型電磁変換素子を有する記録ヘッドとを積層した構造の複合型薄膜磁気ヘッドが広く用いられている。
【0003】
MR素子としては、巨大磁気抵抗(Giant Magnetoresistive)効果を用いたGMR素子や、トンネル磁気抵抗(Tunneling Magnetoresistive)効果を用いたTMR素子等がある。
【0004】
再生ヘッドの特性としては、高感度および高出力であることが要求される。この要求を満たす再生ヘッドとして、既に、スピンバルブ型GMR素子やTMR素子を用いたものが量産されている。
【0005】
スピンバルブ型GMR素子やTMR素子は、一般的には、自由層と、固定層と、これらの間に配置されたスペーサ層と、固定層におけるスペーサ層とは反対側に配置された反強磁性層とを有している。自由層は信号磁界に応じて磁化の方向が変化する強磁性層である。固定層は、磁化の方向が固定された強磁性層である。反強磁性層は、固定層との交換結合により、固定層における磁化の方向を固定する層である。スペーサ層は、スピンバルブ型GMR素子においては非磁性導電層であり、TMR素子においてはトンネルバリア層である。一般的には、トンネルバリア層は、酸化アルミニウムや酸化マグネシウム等の絶縁材料によって形成された絶縁層である。
【0006】
GMR素子には、磁気的信号検出用の電流(以下、センス電流という。)が、GMR素子を構成する各層の面に対して平行な方向に流されるCIP(Current In Plane)構造のものと、センス電流が、GMR素子を構成する各層の面と交差する方向、例えばGMR素子を構成する各層の面に対して垂直な方向に流されるCPP(Current Perpendicular to Plane)構造のものとがある。以下、CPP構造のGMR素子をCPP−GMR素子と呼び、CIP構造のGMR素子をCIP−GMR素子と呼ぶ。TMR素子もCPP構造である。
【0007】
近年、記録密度の増大に伴い、再生ヘッドに対しては、トラック幅の縮小の要求が強くなってきている。再生ヘッドにおいて、トラック幅の縮小はMR素子の幅の縮小によって実現される。MR素子の幅の縮小に伴い、薄膜磁気ヘッドにおける記録媒体に対向する媒体対向面に垂直な方向についてのMR素子の長さも縮小される。その結果、MR素子の下面および上面の面積が減少する。
【0008】
CIP−GMR素子を用いた再生ヘッドでは、CIP−GMR素子とその上下に配置された各シールド層との間がそれぞれシールドギャップ膜によって隔てられているため、CIP−GMR素子の下面および上面の面積が減少すると、放熱効率が低下していた。そのため、この再生ヘッドでは、信頼性を確保するために、動作電流が制限されるという問題点があった。
【0009】
これに対し、CPP−GMR素子を用いた再生ヘッドでは、シールドギャップ膜は不要であり、CPP−GMR素子の下面と上面にそれぞれ電極層が接触している。電極層はシールド層を兼ねていてもよい。この再生ヘッドでは、CPP−GMR素子の下面と上面にそれぞれ電極層が接触していることから、放熱効率がよい。そのため、この再生ヘッドでは、動作電流を大きくすることができる。また、この再生ヘッドでは、CPP−GMR素子の下面および上面の面積が小さいほど素子の抵抗値が大きくなり、磁気抵抗変化量も大きくなる。従って、CPP−GMR素子は、トラック幅の縮小に適している。
【0010】
しかし、一般的なCPP−GMR素子では、非磁性導電層であるスペーサ層の抵抗値が小さいため、磁気抵抗変化量も小さくなる。そのため、素子の抵抗に対する磁気抵抗変化の比率である磁気抵抗変化率(以下、MR変化率と記す。)として十分に大きな値が得られないという問題点があった。
【0011】
一方、TMR素子では、以下のような問題点があった。TMR素子では、上記の一般的なCPP−GMR素子とは逆にスペーサ層の抵抗値が大きいために、TMR素子の抵抗値が大きくなる。磁気ディスク装置では、記録密度の向上と共にデータ転送レートの向上が要求されている。それに伴い、再生ヘッドには、高周波応答性がよいことが要求される。ところが、TMR素子の抵抗値が大きいと、TMR素子およびそれに接続される回路において発生する浮遊容量が大きくなり、再生ヘッドの高周波応答性が低下してしまう。
【0012】
このような状況に鑑みて、以下に示すように、CPP−GMR素子においてスペーサ層および素子の抵抗値を適当な大きさにするための種々の提案がなされている。
【0013】
特許文献1には、電流狭窄型のCPP−GMR素子が記載されている。このCPP−GMR素子は、磁化方向が固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、磁化固着層と磁化自由層との間に設けられた中間層とを備えている。中間層は、抵抗が相対的に高い領域と抵抗が相対的に低い領域とを有する酸化物からなる第1の層(酸化物中間層)を含んでいる。センス電流は、第1の層を通過する際に、抵抗が相対的に低い領域を優先的に流れる。
【0014】
特許文献2には、以下のようなCPP−GMR素子が記載されている。このCPP−GMR素子は、磁化方向が固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、磁化固着層と磁化自由層との間に設けられた非磁性金属中間層と、磁化固着層と磁化自由層との間に設けられ、伝導キャリア数が1022個/cm以下の材料からなる抵抗調節層とを備えている。特許文献2には、抵抗調節層の材料として半導体または半金属が望ましい旨が記載されている。また、特許文献2には、半導体の例としてZnOが挙げられている。
【0015】
特許文献3および特許文献4には、スペーサ層が、ZnO等の酸化物半導体によって構成された層を含むCPP−GMR素子が記載されている。
【0016】
特許文献5には、スペーサ層が、Zn,Ga等の酸化物によって構成された層を含むCPP−GMR素子が記載されている。
【先行技術文献】
【特許文献】
【0017】
【特許文献1】特開2003−298143号公報
【特許文献2】特開2003−008102号公報
【特許文献3】特開2008−091842号公報
【特許文献4】特開2009−010333号公報
【特許文献5】特開2009−088478号公報
【発明の概要】
【発明が解決しようとする課題】
【0018】
CPP−GMR素子において、酸化物半導体によって構成された層を含むスペーサ層を設けることは、スペーサ層および素子の抵抗値を適当な大きさにする上で有用と考えられる。本願の発明者らは、実際に、種々の酸化物半導体を用いて、酸化物半導体によって構成された層を含むスペーサ層を備えたCPP−GMR素子を作製し、その特性を調べた。その結果、スペーサ層が、酸化物半導体によって構成された層として、1つの種類の酸化物半導体よりなる層のみを含む場合には、素子の抵抗値を適当な大きさにし、且つMR変化率を十分に大きくすることが難しいことが分かった。
【0019】
本発明はかかる問題点に鑑みてなされたもので、その目的は、磁気抵抗効果素子の抵抗値を適当な大きさにし、且つMR変化率を十分に大きくすることができるようにした磁気抵抗効果素子、ならびに磁気抵抗効果素子を有する薄膜磁気ヘッド、ヘッドアセンブリおよび磁気記録装置を提供することにある。
【課題を解決するための手段】
【0020】
本発明の磁気抵抗効果素子は、第1の強磁性層と、第2の強磁性層と、第1の強磁性層と第2の強磁性層との間に配置されたスペーサ層とを備え、磁気的信号検出用の電流が、各層の面と交差する方向に流されるものである。本発明の磁気抵抗効果素子において、スペーサ層は、順に積層された非磁性金属層、第1の酸化物半導体層および第2の酸化物半導体層を有している。非磁性金属層は、Cuよりなり、0.3〜1.5nmの範囲内の厚みを有している。第1の酸化物半導体層は、Ga酸化物半導体よりなり、0.5〜2.0nmの範囲内の厚みを有している。第2の酸化物半導体層は、Zn酸化物半導体よりなり、0.1〜1.0nmの範囲内の厚みを有している。
【0021】
本発明の磁気抵抗効果素子において、Ga酸化物半導体はGaであり、Zn酸化物半導体はZnOであってもよい。また、第2の酸化物半導体層は、0.5〜1.0nmの範囲内の厚みを有していてもよい。
【0022】
また、本発明の磁気抵抗効果素子において、第1の強磁性層は、外部磁界に応じて磁化の方向が変化する自由層であり、第2の強磁性層は、磁化の方向が固定された固定層であってもよい。あるいは、第1および第2の強磁性層は、いずれも、外部磁界に応じて磁化の方向が変化する自由層であり、外部磁界に応じて第1の強磁性層の磁化の方向と第2の強磁性層の磁化の方向との相対角度が変化してもよい。
【0023】
本発明の薄膜磁気ヘッドは、記録媒体に対向する媒体対向面と、媒体対向面の近傍に配置された本発明の磁気抵抗効果素子とを備えたものである。
【0024】
本発明のヘッドアセンブリは、本発明の薄膜磁気ヘッドを含み、記録媒体に対向するように配置されるスライダと、スライダを弾性的に支持する支持装置とを備えたものである。
【0025】
本発明の磁気記録装置は、記録媒体と、本発明の薄膜磁気ヘッドと、薄膜磁気ヘッドを支持すると共に記録媒体に対して位置決めする位置決め装置とを備えたものである。
【発明の効果】
【0026】
本発明の磁気抵抗効果素子、ならびに磁気抵抗効果素子を有する薄膜磁気ヘッド、ヘッドアセンブリおよび磁気記録装置では、磁気抵抗効果素子のスペーサ層が、Cuよりなる非磁性金属層、Ga酸化物半導体よりなる第1の酸化物半導体層およびZn酸化物半導体よりなる第2の酸化物半導体層を有し、非磁性金属層、第1および第2の酸化物半導体層が、それぞれ所定の範囲内の厚みを有する。これにより、本発明によれば、磁気抵抗効果素子の抵抗値を適当な大きさにし、且つMR変化率を十分に大きくすることができるという効果を奏する。また、非磁性金属層は、スペーサ層に接する一方の強磁性層の酸化を防止し、これにより一方の強磁性層の特性の劣化を防止する役割を有する。
【図面の簡単な説明】
【0027】
【図1】本発明の第1の実施の形態に係る磁気抵抗効果素子を含む再生ヘッドの媒体対向面に平行な断面を示す断面図である。
【図2】本発明の第1の実施の形態に係る磁気ヘッドの構成を示す断面図である。
【図3】本発明の第1の実施の形態に係る磁気ヘッドの媒体対向面を示す正面図である。
【図4】本発明の第1の実施の形態に係る磁気ヘッドを含むスライダを示す斜視図である。
【図5】本発明の第1の実施の形態に係るヘッドアームアセンブリを示す斜視図である。
【図6】本発明の第1の実施の形態に係る磁気記録装置の要部を説明するための説明図である。
【図7】本発明の第1の実施の形態に係る磁気記録装置の平面図である。
【図8】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図9】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図10】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図11】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図12】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図13】スペーサ層の好ましい構成を求めるために行った実験の結果を示す特性図である。
【図14】本発明の第2の実施の形態に係る磁気抵抗効果素子を含む再生ヘッドの媒体対向面に平行な断面を示す断面図である。
【図15】本発明の第2の実施の形態に係る磁気抵抗効果素子の動作を説明するための説明図である。
【図16】本発明の第2の実施の形態に係る磁気抵抗効果素子の動作を説明するための説明図である。
【図17】本発明の第2の実施の形態に係る磁気抵抗効果素子の動作を説明するための説明図である。
【発明を実施するための形態】
【0028】
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図4を参照して、本発明の第1の実施の形態に係る薄膜磁気ヘッド(以下、単に磁気ヘッドと記す。)を含むスライダ210について説明する。本実施の形態に係る磁気ヘッドは垂直磁気記録用である。磁気記録装置において、スライダ210は、回転駆動される円盤状の記録媒体(磁気ディスク)に対向するように配置される。図4において、X方向は記録媒体のトラック横断方向すなわちトラック幅方向であり、Y方向は記録媒体の表面に垂直な方向であり、Z方向はスライダ210から見た記録媒体の進行方向である。X方向、Y方向、Z方向は互いに直交している。スライダ210は、基体211を備えている。基体211は、ほぼ六面体形状をなしている。基体211の六面のうちの一面は、記録媒体の表面に対向するようになっている。この一面には、記録媒体に対向する媒体対向面40が形成されている。記録媒体が回転してZ方向に進行すると、記録媒体とスライダ210との間を通過する空気流によって、スライダ210に、図4におけるY方向の下方に揚力が生じる。スライダ210は、この揚力によって記録媒体の表面から浮上するようになっている。スライダ210の空気流出側の端部(Z方向における端部)の近傍には、本実施の形態に係る磁気ヘッド100が形成されている。また、スライダ210の空気流出側の端部には、複数の端子212が設けられている。
【0029】
次に、図5を参照して、本実施の形態に係るヘッドアセンブリについて説明する。本実施の形態に係るヘッドアセンブリは、図4に示したスライダ210と、このスライダ210を弾性的に支持する支持装置とを備えている。このヘッドアセンブリの態様には、以下で説明するヘッドジンバルアセンブリとヘッドアームアセンブリが含まれる。
【0030】
まず、ヘッドジンバルアセンブリ220について説明する。ヘッドジンバルアセンブリ220は、スライダ210と、このスライダ210を弾性的に支持する支持装置としてのサスペンション221とを備えている。サスペンション221は、例えばステンレス鋼によって形成された板ばね状のロードビーム222と、このロードビーム222の一端部に設けられると共にスライダ210が接合され、スライダ210に適度な自由度を与えるフレクシャ223と、ロードビーム222の他端部に設けられたベースプレート224とを有している。ベースプレート224は、スライダ210を記録媒体262のトラック横断方向Xに移動させるためのアクチュエータのアーム230に取り付けられるようになっている。アクチュエータは、アーム230と、このアーム230を駆動するボイスコイルモータとを有している。フレクシャ223において、スライダ210が取り付けられる部分には、スライダ210の姿勢を一定に保つためのジンバル部が設けられている。
【0031】
ヘッドジンバルアセンブリ220は、アクチュエータのアーム230に取り付けられる。1つのアーム230にヘッドジンバルアセンブリ220を取り付けたものはヘッドアームアセンブリと呼ばれる。また、複数のアームを有するキャリッジの各アームにヘッドジンバルアセンブリ220を取り付けたものはヘッドスタックアセンブリと呼ばれる。
【0032】
図5は、本実施の形態に係るヘッドアームアセンブリを示している。このヘッドアームアセンブリでは、アーム230の一端部にヘッドジンバルアセンブリ220が取り付けられている。アーム230の他端部には、ボイスコイルモータの一部となるコイル231が取り付けられている。アーム230の中間部には、アーム230を回動自在に支持するための軸234に取り付けられる軸受け部233が設けられている。
【0033】
次に、図6および図7を参照して、ヘッドスタックアセンブリの一例と本実施の形態に係る磁気記録装置について説明する。図6は磁気記録装置の要部を示す説明図、図7は磁気記録装置の平面図である。ヘッドスタックアセンブリ250は、複数のアーム252を有するキャリッジ251を有している。複数のアーム252には、複数のヘッドジンバルアセンブリ220が、互いに間隔を開けて垂直方向に並ぶように取り付けられている。キャリッジ251においてアーム252とは反対側には、ボイスコイルモータの一部となるコイル253が取り付けられている。ヘッドスタックアセンブリ250は、磁気記録装置に組み込まれる。磁気記録装置は、スピンドルモータ261に取り付けられた複数枚の記録媒体262を有している。記録媒体262毎に、記録媒体262を挟んで対向するように2つのスライダ210が配置される。また、ボイスコイルモータは、ヘッドスタックアセンブリ250のコイル253を挟んで対向する位置に配置された永久磁石263を有している。スライダ210を除くヘッドスタックアセンブリ250およびアクチュエータは、スライダ210を支持すると共に記録媒体262に対して位置決めする。
【0034】
本実施の形態に係る磁気記録装置では、アクチュエータによって、スライダ210を記録媒体262のトラック横断方向に移動させて、スライダ210を記録媒体262に対して位置決めする。スライダ210に含まれる磁気ヘッドは、記録ヘッドによって、記録媒体262に情報を記録し、再生ヘッドによって、記録媒体262に記録されている情報を再生する。
【0035】
次に、図2および図3を参照して、本実施の形態に係る磁気ヘッドの構成について説明する。図2は磁気ヘッドの構成を示す断面図である。図3は磁気ヘッドの媒体対向面を示す正面図である。なお、図2は媒体対向面および基板の上面に垂直な断面を示している。図2および図3には、図4に示したX,Y,Zの各方向も示している。なお、図2において、X方向はY方向およびZ方向に直交する方向であり、図3において、Y方向はX方向およびZ方向に直交する方向である。
【0036】
図2に示したように、本実施の形態に係る磁気ヘッドは、記録媒体に対向する媒体対向面40を備えている。また、図2および図3に示したように、磁気ヘッドは、アルミニウムオキサイド・チタニウムカーバイド(Al23・TiC)等のセラミック材料よりなる基板1と、この基板1の上に配置されたアルミナ(Al23)等の絶縁材料よりなる絶縁層2と、この絶縁層2の上に配置された磁性材料よりなる第1の再生シールド3と、この第1の再生シールド3の上に配置された磁気抵抗効果素子(以下、MR素子と記す。)5と、このMR素子5のトラック幅方向(図3におけるX方向)の両側の2つの側部に隣接するように配置された2つのバイアス磁界印加層6と、MR素子5およびバイアス磁界印加層6の周囲に配置された絶縁リフィル層7とを備えている。絶縁リフィル層7は、アルミナ等の絶縁材料によって形成されている。
【0037】
磁気ヘッドは、更に、MR素子5、バイアス磁界印加層6および絶縁リフィル層7の上に配置された磁性材料よりなる第2の再生シールド8と、この第2の再生シールド8の上に配置されたアルミナ等の非磁性材料よりなる分離層9とを備えている。第1の再生シールド3から第2の再生シールド8までの部分は、再生ヘッドを構成する。
【0038】
磁気ヘッドは、更に、分離層9の上に配置された磁性材料よりなるサブシールド10と、サブシールド10の周囲に配置されたアルミナ等の絶縁材料よりなる絶縁層11とを備えている。サブシールド10は、媒体対向面40に配置された端面を有している。サブシールド10および絶縁層11の上面は平坦化されている。
【0039】
磁気ヘッドは、更に、サブシールド10および絶縁層11の上に配置された絶縁膜12と、この絶縁膜12の上に配置されたヒーター13と、絶縁膜12との間でヒーター13を挟むように絶縁膜12およびヒーター13の上に配置された絶縁膜14とを備えている。ヒーター13の機能および材料については、後で説明する。絶縁膜12,14は、アルミナ等の絶縁材料によって形成されている。
【0040】
磁気ヘッドは、更に、サブシールド10の上に配置された第1の記録シールド15を備えている。第1の記録シールド15は、サブシールド10の上に配置された第1層15Aと、この第1層15Aの上に配置された第2層15Bとを有している。第1層15Aおよび第2層15Bは、磁性材料によって形成されている。第1層15Aおよび第2層15Bは、それぞれ、媒体対向面40に配置された端面を有している。図2に示した例では、媒体対向面40に垂直な方向(図2におけるY方向)についての第2層15Bの長さが、媒体対向面40に垂直な方向についての第1層15Aの長さよりも小さくなっている。しかし、媒体対向面40に垂直な方向についての第2層15Bの長さは、媒体対向面40に垂直な方向についての第1層15Aの長さと等しくてもよいし、媒体対向面40に垂直な方向についての第1層15Aの長さよりも大きくてもよい。
【0041】
磁気ヘッドは、更に、絶縁膜14の上に配置された導電材料よりなるコイル16と、このコイル16の巻線間およびコイル16と第1層15Aとの間に充填された絶縁層17と、第1層15A、コイル16および絶縁層17の周囲に配置された絶縁層18とを備えている。コイル16は、平面渦巻き形状をなしている。コイル16は、中心側の端部近傍の部分であって、後述する他のコイルに接続される部分である接続部16aを含んでいる。絶縁層17は、例えばフォトレジストによって形成されている。絶縁層18は、例えばアルミナによって形成されている。第1層15A、コイル16、絶縁層17および絶縁層18の上面は平坦化されている。
【0042】
磁気ヘッドは、更に、接続部16aの上に配置された導電材料よりなる接続層19と、第2層15Bおよび接続層19の周囲に配置されたアルミナ等の絶縁材料よりなる絶縁層20とを備えている。接続層19は、第2層15Bと同じ材料によって形成されていてもよい。第2層15B、接続層19および絶縁層20の上面は平坦化されている。
【0043】
磁気ヘッドは、更に、第2層15B、接続層19および絶縁層20の上に配置された第1のギャップ層23を備えている。この第1のギャップ層23には、接続層19の上面に対応する位置に開口部が形成されている。第1のギャップ層23は、アルミナ等の非磁性且つ絶縁性の材料によって形成されている。
【0044】
磁気ヘッドは、更に、第1のギャップ層23の上に配置された磁性材料よりなる磁極層24と、接続層19の上に配置された導電材料よりなる接続層25と、磁極層24および接続層25の周囲に配置されたアルミナ等の絶縁材料よりなる絶縁層26とを備えている。磁極層24は、媒体対向面40に配置された端面を有している。接続層25は、第1のギャップ層23の開口部を通して接続層19に接続されている。接続層25は、磁極層24と同じ材料によって形成されていてもよい。
【0045】
磁気ヘッドは、更に、非磁性材料よりなり、磁極層24の上面の一部の上に配置された非磁性層41を備えている。非磁性層41は、例えば無機絶縁材料または金属材料よりなる。非磁性層41として用いられる無機絶縁材料としては、アルミナ、SiO2等がある。非磁性層41として用いられる金属材料としては、Ru、Ti等がある。
【0046】
磁気ヘッドは、更に、磁極層24の一部および非磁性層41の上に配置された第2のギャップ層27を備えている。非磁性層41および第2のギャップ層27は、磁極層24の上面のうち媒体対向面40から離れた一部分と接続層25の上面は覆っていない。第2のギャップ層27は、アルミナ等の非磁性材料によって形成されている。
【0047】
磁気ヘッドは、更に、第2のギャップ層27の上に配置された第2の記録シールド28を備えている。第2の記録シールド28は、第2のギャップ層27に隣接するように配置された第1層28Aと、この第1層28Aにおける第2のギャップ層27とは反対側に配置されて、第1層28Aに接続された第2層28Bとを有している。第1層28Aおよび第2層28Bは、磁性材料によって形成されている。第1層28Aおよび第2層28Bは、それぞれ、媒体対向面40に配置された端面を有している。
【0048】
磁気ヘッドは、更に、媒体対向面40から離れた位置において磁極層24の上に配置された磁性材料よりなるヨーク層29と、接続層25の上に配置された導電材料よりなる接続層30と、第1層28A、ヨーク層29および接続層30の周囲に配置されたアルミナ等の絶縁材料よりなる絶縁層31とを備えている。ヨーク層29および接続層30は、第1層28Aと同じ材料によって形成されていてもよい。第1層28A、ヨーク層29、接続層30および絶縁層31の上面は平坦化されている。
【0049】
磁気ヘッドは、更に、ヨーク層29および絶縁層31の上に配置されたアルミナ等の絶縁材料よりなる絶縁層32を備えている。絶縁層32には、第1層28Aの上面を露出させる開口部と、ヨーク層29の上面のうち媒体対向面40から遠い端部の近傍の部分を露出させる開口部と、接続層30の上面を露出させる開口部とが形成されている。
【0050】
磁気ヘッドは、更に、絶縁層32の上に配置された導電材料よりなるコイル33を備えている。コイル33は、平面渦巻き形状をなしている。コイル33は、中心側の端部近傍の部分であって、コイル16の接続部16aに接続される部分である接続部33aを含んでいる。接続部33aは、接続層30に接続され、接続層19,25,30を介して接続部16aに接続されている。
【0051】
磁気ヘッドは、更に、コイル33を覆うように配置された絶縁層34を備えている。絶縁層34は、例えばフォトレジストによって形成されている。第2の記録シールド28の第2層28Bは、第1層28A、ヨーク層29および絶縁層34の上に配置され、第1層28Aとヨーク層29とを接続している。
【0052】
磁気ヘッドは、更に、第2層28Bを覆うように配置されたアルミナ等の絶縁材料よりなるオーバーコート層35を備えている。サブシールド10から第2層28Bまでの部分は、記録ヘッドを構成する。図4における基体211は、主に図2における基板1およびオーバーコート層35によって構成されている。
【0053】
以上説明したように、磁気ヘッドは、記録媒体に対向する媒体対向面40と再生ヘッドと記録ヘッドとを備えている。再生ヘッドと記録ヘッドは、基板1の上に積層されている。再生ヘッドは記録媒体の進行方向(Z方向)の後側(スライダにおける空気流入端側)に配置され、記録ヘッドは記録媒体の進行方向(Z方向)の前側(スライダにおける空気流出端側)に配置されている。この磁気ヘッドでは、記録ヘッドによって記録媒体に情報を記録し、再生ヘッドによって、記録媒体に記録されている情報を再生する。再生ヘッドの構成については、後で詳しく説明する。
【0054】
記録ヘッドは、サブシールド10、第1の記録シールド15、コイル16、第1のギャップ層23、磁極層24、非磁性層41、第2のギャップ層27、第2の記録シールド28、ヨーク層29およびコイル33を有している。第1の記録シールド15と第2の記録シールド28のうち、第1の記録シールド15の方が基板1に近い位置に配置されている。また、磁極層24と第2の記録シールド28のうち、磁極層24の方が基板1に近い位置に配置されている。
【0055】
コイル16,33は、記録媒体に記録する情報に応じた磁界を発生する。磁極層24は、媒体対向面40に配置された端面を有し、コイル16,33によって発生された磁界に対応する磁束を通過させると共に、垂直磁気記録方式によって情報を記録媒体に記録するための記録磁界を発生する。
【0056】
第1の記録シールド15は、磁性材料よりなり、媒体対向面40において磁極層24の端面に対して記録媒体の進行方向(Z方向)の後側に配置された端面を有している。第1のギャップ層23は、非磁性材料よりなり、媒体対向面40に配置された端面を有し、第1の記録シールド15と磁極層24との間に配置されている。本実施の形態では、第1の記録シールド15は、サブシールド10の上に配置された第1層15Aと、この第1層15Aの上に配置された第2層15Bとを有している。コイル16の一部は、サブシールド10と磁極層24の間の空間を通過するように、第1層15Aの側方に配置されている。
【0057】
サブシールド10は、磁極層24の端面より発生されて、記録媒体を磁化した磁束を還流させる機能を有している。なお、図2には、サブシールド10の端面が媒体対向面40に配置された例を示している。しかし、サブシールド10は、媒体対向面40に配置された端面を有する第1の記録シールド15に接続されているので、サブシールド10の媒体対向面40により近い端面が媒体対向面40から離れた位置に配置されていてもよい。
【0058】
媒体対向面40において、第1の記録シールド15の端面(第2層15Bの端面)は、磁極層24の端面に対して、第1のギャップ層23による所定の小さな間隔を開けて記録媒体の進行方向(Z方向)の後側(スライダにおける空気流入端側)に配置されている。媒体対向面40における磁極層24の端面と第1の記録シールド15の端面との間隔は、0.05〜0.7μmの範囲内であることが好ましく、0.1〜0.3μmの範囲内であることがより好ましい。
【0059】
第1の記録シールド15は、媒体対向面40に配置された磁極層24の端面より発生されて記録媒体の面に垂直な方向以外の方向に広がる磁束を取り込むことにより、この磁束が記録媒体に達することを阻止する。これにより、記録密度を向上させることができる。
【0060】
第2の記録シールド28は、磁性材料よりなり、媒体対向面40において磁極層24の端面に対して記録媒体の進行方向(Z方向)の前側に配置された端面を有している。第2のギャップ層27は、非磁性材料よりなり、媒体対向面40に配置された端面を有し、第2の記録シールド28と磁極層24との間に配置されている。本実施の形態では、第2の記録シールド28は、第2のギャップ層27に隣接するように配置された第1層28Aと、この第1層28Aにおける第2のギャップ層27とは反対側に配置されて、第1層28Aに接続された第2層28Bとを有している。コイル33の一部は、磁極層24と第2の記録シールド28によって囲まれた空間を通過するように配置されている。第2の記録シールド28は、媒体対向面40から離れた位置でヨーク層29に接続されている。従って、第2の記録シールド28は、媒体対向面40から離れた位置で、ヨーク層29を介して磁極層24に接続されている。磁極層24、第2の記録シールド28およびヨーク層29は、コイル33が発生する磁界に対応した磁束を通過させる磁路を形成する。
【0061】
媒体対向面40において、第2の記録シールド28の端面(第1層28Aの端面)は、磁極層24の端面に対して、第2のギャップ層27による所定の小さな間隔を開けて記録媒体の進行方向(Z方向)の前側(スライダにおける空気流出端側)に配置されている。媒体対向面40における磁極層24の端面と第2の記録シールド28の端面との間隔は、第2の記録シールド28がシールドとしての機能を十分に発揮することができるように、200nm以下であることが好ましく、25〜50nmの範囲内であることがより好ましい。
【0062】
記録媒体に記録されるビットパターンの端部の位置は、媒体対向面40における磁極層24の第2のギャップ層27側の端部の位置によって決まる。第2の記録シールド28は、媒体対向面40に配置された磁極層24の端面より発生されて記録媒体の面に垂直な方向以外の方向に広がる磁束を取り込むことにより、この磁束が記録媒体に達することを阻止する。これにより、記録密度を向上させることができる。また、第2の記録シールド28は、磁気ヘッドの外部から磁気ヘッドに印加された外乱磁界を取り込む。これにより、外乱磁界が磁極層24に集中して取り込まれることによって記録媒体に対して誤った記録が行なわれることを防止することができる。また、第2の記録シールド28は、磁極層24の端面より発生されて、記録媒体を磁化した磁束を還流させる機能も有している。
【0063】
なお、図2には、サブシールド10および第1の記録シールド15が磁極層24に接続されていない例を示している。しかし、サブシールド10と磁極層24は、媒体対向面40から離れた位置で接続されていてもよい。また、コイル16は、記録ヘッドにおける必須の構成要素ではなく、設けられていなくてもよい。また、図2には、ヨーク層29を、磁極層24の上、すなわち磁極層24に対して記録媒体の進行方向(Z方向)の前側(スライダにおける空気流出端側)に配置した例を示している。しかし、ヨーク層29は、磁極層24の下、すなわち磁極層24に対して記録媒体の進行方向(Z方向)の後側(スライダにおける空気流入端側)に配置してもよい。
【0064】
ヒーター13は、媒体対向面40に配置された磁極層24の端面と記録媒体との間の距離を制御するために、磁極層24を含む記録ヘッドの構成要素を加熱するものである。ヒーター13には、図示しない2つのリードが接続されている。ヒーター13は、例えば、Ta膜、NiCu膜およびTa膜からなる積層膜や、NiCr膜によって形成されている。ヒーター13は、2つのリードによって通電されて発熱し、記録ヘッドの構成要素を加熱する。これにより、記録ヘッドの構成要素が膨張し、媒体対向面40に配置された磁極層24の端面が記録媒体に近づく。
【0065】
なお、図2および図3には、垂直磁気記録方式用の記録ヘッドを示したが、本実施の形態における記録ヘッドは、長手磁気記録方式用の記録ヘッドであってもよい。
【0066】
ここで、本実施の形態に係る磁気ヘッドの製造方法の概略について説明する。本実施の形態に係る磁気ヘッドの製造方法では、例えば、1枚の基板(ウェハ)に対して、複数の磁気ヘッドの構成要素を形成して、それぞれ後にスライダとなるスライダ予定部が複数列に配列された基礎構造物(substructure)を作製する。次に、この基礎構造物を切断して、1列に配列された複数のスライダ予定部を含むスライダ集合体を作製する。次に、基礎構造物を切断することによってスライダ集合体に形成された1つの面に対して研磨を行うことにより、スライダ集合体に含まれる各スライダ予定部に対して媒体対向面40を形成する。次に、媒体対向面40に浮上用レールを形成する。次に、複数のスライダ予定部が互いに分離されるようにスライダ集合体を切断して、それぞれ磁気ヘッドを含む複数のスライダを形成する。
【0067】
次に、図1を参照して、本実施の形態に係るMR素子5を含む再生ヘッドの構成について詳しく説明する。図1は、再生ヘッドの媒体対向面40に平行な断面を示す断面図である。図1には、図4に示したX,Y,Zの各方向も示している。なお、図1において、Y方向はX方向およびZ方向に直交する方向である。図1において記号TWで示す矢印は、トラック幅方向を表している。トラック幅方向TWは、X方向と同じ方向である。
【0068】
再生ヘッドは、所定の間隔を開けて配置された第1の再生シールド3および第2の再生シールド8と、第1の再生シールド3と第2の再生シールド8との間に配置されたMR素子5とを備えている。MR素子5および第2の再生シールド8は第1の再生シールド3の上に順に積層されている。
【0069】
再生ヘッドは、更に、MR素子5の2つの側部に隣接するように配置され、MR素子5に対してバイアス磁界を印加する2つのバイアス磁界印加層6と、第1の再生シールド3およびMR素子5とバイアス磁界印加層6との間に配置された絶縁層4とを備えている。
【0070】
バイアス磁界印加層6は、硬磁性層(ハードマグネット)や、強磁性層と反強磁性層との積層体等を用いて構成される。具体的には、バイアス磁界印加層6は、例えばCoPtやCoCrPtによって形成される。絶縁層4は、例えばアルミナによって形成される。
【0071】
本実施の形態に係るMR素子5は、CPP−GMR素子になっている。このMR素子5には、磁気的信号検出用の電流であるセンス電流が、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に流される。第1の再生シールド3と第2の再生シールド8は、センス電流を、MR素子5に対して、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に流すための一対の電極を兼ねている。なお、第1の再生シールド3および第2の再生シールド8とは別に、MR素子5の上下に一対の電極を設けてもよい。MR素子5は、外部磁界、すなわち記録媒体からの信号磁界に応じて抵抗値が変化する。MR素子5の抵抗値はセンス電流より求めることができる。このようにして、再生ヘッドによって、記録媒体に記録されている情報を再生することができる。
【0072】
図1には、MR素子5の構成の一例を示している。このMR素子5は、外部磁界としての信号磁界に応じて磁化の方向が変化する強磁性層である自由層55と、磁化の方向が固定された強磁性層である固定層53と、自由層55と固定層53との間に配置されたスペーサ層54とを備えている。自由層55は本発明における第1の強磁性層に対応し、固定層53は本発明における第2の強磁性層に対応する。図1に示した例では、固定層53と自由層55のうち、固定層53の方が第1の再生シールド3に近い位置に配置されている。しかし、逆に、自由層55の方が第1の再生シールド3に近い位置に配置されていてもよい。MR素子5は、更に、固定層53におけるスペーサ層54とは反対側に配置された反強磁性層52と、第1の再生シールド3と反強磁性層52との間に配置された下地層51と、自由層55と第2の再生シールド8との間に配置された保護層56とを備えている。図1に示したMR素子5では、第1の再生シールド3の上に、下地層51、反強磁性層52、固定層53、スペーサ層54、自由層55および保護層56が順に積層されている。
【0073】
反強磁性層52は、固定層53との交換結合により、固定層53における磁化の方向を固定する層である。下地層51は、その上に形成される各層の結晶性や配向性を向上させ、特に、反強磁性層52と固定層53との交換結合を良好にするために設けられる。保護層56は、その下の各層を保護するための層である。
【0074】
下地層51の厚みは、例えば2〜6nmである。下地層51としては、例えばTa層とRu層との積層体が用いられる。
【0075】
反強磁性層52の厚みは、例えば5〜30nmである。反強磁性層52は、例えば、Pt、Ru、Rh、Pd、Ni、Cu、Ir、CrおよびFeからなる群のうちの少なくとも1種MIIと、Mnとを含む反強磁性材料により構成されている。このうちMnの含有量は35原子%以上95原子%以下、その他の元素MIIの含有量は5原子%以上65原子%以下であることが好ましい。この反強磁性材料には、熱処理しなくても反強磁性を示し、強磁性材料との間に交換結合磁界を誘起する非熱処理系反強磁性材料と、熱処理により反強磁性を示すようになる熱処理系反強磁性材料とがある。この反強磁性層52は、そのどちらにより構成されていてもよい。非熱処理系反強磁性材料にはγ相を有するMn合金等があり、具体的には、RuRhMn、FeMnあるいはIrMn等がある。熱処理系反強磁性材料には規則結晶構造を有するMn合金等があり、具体的には、PtMn、NiMnおよびPtRhMn等がある。
【0076】
なお、固定層53における磁化の方向を固定する層として、上記のような反強磁性層52の代りに、CoPt等の硬磁性材料よりなる硬磁性層を設けてもよい。この場合には、下地層51の材料としては、Cr、CrTi、TiW等が用いられる。
【0077】
固定層53では、反強磁性層52との界面における交換結合により、磁化の向きが固定されている。本実施の形態における固定層53は、反強磁性層52の上に順に積層されたアウター層531、非磁性中間層532およびインナー層533を有し、いわゆるシンセティック固定層になっている。アウター層531およびインナー層533は、例えば、CoおよびFeからなる群のうちの少なくともCoを含む強磁性材料により構成された強磁性層を含んでいる。アウター層531とインナー層533は、反強磁性的に結合し、磁化の方向が互いに逆方向に固定されている。アウター層531の厚みは、例えば3〜7nmである。インナー層533の厚みは、例えば3〜10nmである。
【0078】
非磁性中間層532の厚みは、例えば0.35〜1.0nmである。非磁性中間層532は、例えば、Ru、Rh、Ir、Re、Cr、ZrおよびCuからなる群のうち少なくとも1種を含む非磁性材料により構成されている。この非磁性中間層532は、インナー層533とアウター層531の間に反強磁性交換結合を生じさせ、インナー層533の磁化とアウター層531の磁化とを互いに逆方向に固定するためのものである。なお、インナー層533の磁化とアウター層531の磁化が互いに逆方向というのは、これら2つの磁化の方向が互いに180°異なる場合のみならず、2つの磁化の方向が180°±20°異なる場合を含む。
【0079】
本実施の形態におけるスペーサ層54は、固定層53(インナー層533)の上に順に積層された非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543を有している。非磁性金属層541は、Cuよりなり、0.3〜1.5nmの範囲内の厚みを有している。第1の酸化物半導体層542は、Ga酸化物半導体よりなり、0.5〜2.0nmの範囲内の厚みを有している。第2の酸化物半導体層543は、Zn酸化物半導体よりなり、0.1〜1.0nmの範囲内の厚みを有している。第2の酸化物半導体層543の上面は、自由層55の下面に接している。Ga酸化物半導体は、Gaであってもよい。Zn酸化物半導体は、ZnOであってもよい。
【0080】
第1の酸化物半導体層542を構成するGaと第2の酸化物半導体層543を構成するZnOは、いずれも酸化物半導体である。第1の酸化物半導体層542を構成するGaは、結晶質でもよいしアモルファスでもよい。また、第1の酸化物半導体層542を構成するGaの組成は、化学量論的組成から多少ずれたものであってもよい。
【0081】
自由層55の厚みは、例えば2〜10nmである。自由層55は、保磁力が小さい強磁性層によって構成されている。自由層55は、積層された複数の強磁性層を含んでいてもよい。
【0082】
保護層56の厚みは、例えば0.5〜20nmである。保護層56としては、例えばTa層やRu層が用いられる。また、保護層56は、Ta層、Ru層等の組み合わせの2積層構造や、Ta層、Ru層、Ta層の組み合わせや、Ru層、Ta層、Ru層の組み合わせ等の3積層構造としてもよい。
【0083】
なお、インナー層533と自由層55の少なくとも一方は、ホイスラー合金層を含んでいてもよい。
【0084】
MR素子5の抵抗値の大小は、MR素子5の面積抵抗(resistance-area product;以下、RAとも記す。)で評価するのが適当である。MR素子5のRAが小さすぎると、MR変化率が小さくなると共に、MR素子5における電流密度が大きくなりすぎて固定層53または自由層55におけるスピントルクが大きくなるという問題が発生する。なお、スピントルクとは、自由層55から固定層53へ、あるいは固定層53から自由層55へ注入されるスピン偏極電子によって発生して、固定層53または自由層55の磁化を回転させるトルクである。一方、MR素子5のRAが大きすぎると、再生ヘッドの高周波応答性が低下すると共に、ノイズが増大する。MR素子5のRAは、0.1〜0.3Ω・μmの範囲内であることが好ましい。
【0085】
次に、図1に示した再生ヘッドの製造方法について説明する。この再生ヘッドの製造方法では、まず、絶縁層2の上に、めっき法等によって、所定のパターンの第1の再生シールド3を形成する。次に、第1の再生シールド3の上に、例えばスパッタ法によって、MR素子5を構成する各層となる膜を順に形成し、これらの膜の積層体を形成する。次に、この積層体に対して、所定の温度で加熱するアニールを施す。このアニールの温度は、200〜300℃の範囲内であることが好ましい。次に、積層体をエッチングによってパターニングして、MR素子5を形成する。次に、例えばスパッタ法によって、絶縁層4とバイアス磁界印加層6を順に形成する。次に、MR素子5およびバイアス磁界印加層6の上に、例えばめっき法またはスパッタ法によって、第2の再生シールド8を形成する。
【0086】
なお、上記のアニールは、スペーサ層54の酸化物半導体層542,543の結晶化を促進してスペーサ層54の抵抗値を低下させて、MR素子5のRAを所望の範囲内に収めるために必要である。従って、このアニールは、スペーサ層54を構成する各層となる膜の形成後であれば、どの段階で行ってもよい。例えば、上記積層体をパターニングした後にアニールを行ってもよい。また、上記のアニールは、積層体に磁界を印加しながら行うことによって、固定層53のアウター層531およびインナー層533の磁化の方向を設定するためのアニールを兼ねてもよい。
【0087】
次に、本実施の形態に係る薄膜磁気ヘッドの作用について説明する。薄膜磁気ヘッドは、記録ヘッドによって記録媒体に情報を記録し、再生ヘッドによって、記録媒体に記録されている情報を再生する。
【0088】
再生ヘッドにおいて、バイアス磁界印加層6によるバイアス磁界の方向は、トラック幅方向TWと同じである。MR素子5において、信号磁界がない状態では、自由層55の磁化の方向は、バイアス磁界の方向に揃えられている。一方、固定層53の磁化の方向は、媒体対向面40に垂直な方向に固定されている。
【0089】
MR素子5では、記録媒体からの信号磁界に応じて自由層55の磁化の方向が変化し、これにより、自由層55の磁化の方向と固定層53の磁化の方向との間の相対角度が変化し、その結果、MR素子5の抵抗値が変化する。MR素子5の抵抗値は、第1および第2の再生シールド3,8によってMR素子5にセンス電流を流したときの再生シールド3,8間の電位差より求めることができる。このようにして、再生ヘッドによって、記録媒体に記録されている情報を再生することができる。
【0090】
本実施の形態に係るMR素子5において、スペーサ層54は、順に積層された非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543を有している。本実施の形態では、スペーサ層54が非磁性金属層のみからなる場合に比べてMR素子5のRAを大きくすることができ、TMR素子のようにスペーサ層54が絶縁層よりなる場合に比べてMR素子5のRAを小さくすることができる。また、非磁性金属層541は、スペーサ層54に接する一方の強磁性層すなわち固定層53(インナー層533)の酸化を防止し、これにより固定層53(インナー層533)の特性の劣化を防止する役割を有する。非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543の各厚みの範囲は、以下で説明する実験の結果に基づいて決定されている。
【0091】
以下、MR素子5のスペーサ層54の好ましい構成を求めるために行った実験の結果について説明する。実験では、スペーサ層54の構成が異なる複数のMR素子の試料を作製し、それらのMR変化率(%)とRA(Ω・μm)とを測定した。試料の構成を、以下の表1に示す。
【0092】
【表1】

【0093】
非磁性金属層541の厚みT1、第1の酸化物半導体層542の厚みT2および第2の酸化物半導体層543の厚みT3は、試料によって異なる。実験で作製した複数の試料には、以下の構成の第1の比較例の複数の試料と第2の比較例の複数の試料とが含まれている。第1の比較例の複数の試料では、スペーサ層54は、第1の酸化物半導体層542を含まず(T2=0)、非磁性金属層541および、その上に形成された第2の酸化物半導体層543のみによって構成されている。第2の比較例の複数の試料では、スペーサ層54は、第2の酸化物半導体層543を含まず(T3=0)、非磁性金属層541および、その上に形成された第1の酸化物半導体層542のみによって構成されている。実験で作製した複数の試料のうち、第1および第2の比較例の複数の試料以外の複数の試料では、スペーサ層54は、非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543によって構成されている。
【0094】
各試料は、DCスパッタ装置を用いて、アルミニウムオキサイド・チタニウムカーバイドよりなる基板の上に、表1に示した各層を下から順に形成して積層体を形成した後、積層体をエッチングによってパターニングし、更に、積層体に対してアニールを施して作製した。第1の酸化物半導体層542の成膜レートは0.0039nm/秒とした。第2の酸化物半導体層543の成膜レートは0.0124nm/秒とした。各試料の上から見た形状は、幅200nm、長さ200nmの正方形である。なお、上記の「幅」とはトラック幅方向の長さであり、「長さ」とは媒体対向面40に垂直な方向の長さである。積層体のアニールは、10kOe(1Oe=79.6A/m)の磁界を積層体に印加しながら、250℃の温度で3時間行った。各試料のMR変化率とRAは、直流四端子法によって測定した。
【0095】
第1および第2の比較例の複数の試料では、非磁性金属層541の厚みT1を0.8nmとしている。その理由は、第1および第2の比較例の複数の試料の特性を基準にして、他の複数の試料の特性を評価するためである。すなわち、後で示すが、第1および第2の比較例の複数の試料以外の複数の試料では、少なくともT1が0.8nmの場合には、T2,T3が所定の範囲内のときに、RAが0.1〜0.3Ω・μmの範囲内で20%以上の大きなMR変化率が得られている。従って、0.8nmという値は、T1の好ましい値の1つと考えられる。
【0096】
表2は、第1の比較例の複数の試料のMR変化率とRAを示している。表3は、第2の比較例の複数の試料のMR変化率とRAを示している。また、図8は、第1および第2の比較例の複数の試料のMR変化率とRAとの関係を示している。
【0097】
【表2】

【0098】
【表3】

【0099】
表2,3および図8に示したように、第1および第2の比較例の複数の試料では、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率は得られていない。そこで、本実施の形態に係るMR素子5のスペーサ層54の構成に関しては、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率が得られる構成を、好ましい構成とみなす。
【0100】
表4は、T1が0.2nmで、T2,T3が種々の値の複数の試料のMR変化率とRAを示している。また、図9は、表4に示した複数の試料のMR変化率とRAとの関係を示している。図9には、第1および第2の比較例の複数の試料のMR変化率とRAとの関係も示している。なお、図9における注釈では、T2が0.4nmの複数の試料を「Ga(0.4)」と表し、T2が0.5nmの複数の試料を「Ga(0.5)」と表し、T2が2.0nmの複数の試料を「Ga(2.0)」と表し、T2が2.1nmの複数の試料を「Ga(2.1)」と表している。これは、図10ないし図13においても同様である。
【0101】
【表4】

【0102】
表5は、T1が0.3nmで、T2,T3が種々の値の複数の試料のMR変化率とRAを示している。また、図10は、表5に示した複数の試料のMR変化率とRAとの関係を示している。図10には、第1および第2の比較例の複数の試料のMR変化率とRAとの関係も示している。
【0103】
【表5】

【0104】
表6は、T1が0.8nmで、T2,T3が種々の値の複数の試料のMR変化率とRAを示している。また、図11は、表6に示した複数の試料のMR変化率とRAとの関係を示している。図11には、第1および第2の比較例の複数の試料のMR変化率とRAとの関係も示している。
【0105】
【表6】

【0106】
表7は、T1が1.5nmで、T2,T3が種々の値の複数の試料のMR変化率とRAを示している。また、図12は、表7に示した複数の試料のMR変化率とRAとの関係を示している。図12には、第1および第2の比較例の複数の試料のMR変化率とRAとの関係も示している。
【0107】
【表7】

【0108】
表8は、T1が1.6nmで、T2,T3が種々の値の複数の試料のMR変化率とRAを示している。また、図13は、表8に示した複数の試料のMR変化率とRAとの関係を示している。図13には、第1および第2の比較例の複数の試料のMR変化率とRAとの関係も示している。
【0109】
【表8】

【0110】
以下、実験の結果を参照しながら、MR素子5のスペーサ層54の好ましい構成について説明する。第1および第2の比較例の複数の試料以外の複数の試料に関して、T1が0.2nm(表4、図9)の場合と、T1が1.6nm(表8、図13)の場合には、ほとんどの試料において、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率は得られていない。一方、T1が0.3nm(表5、図10)の場合と、T1が0.8nm(表6、図11)の場合と、T1が1.5nm(表7、図12)の場合には、T2,T3が所定の範囲内のときに、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率が得られている。このことから、T1は、0.3〜1.5nmの範囲内であることが好ましい。
【0111】
次に、T1が0.3nm(表5、図10)の場合と、T1が0.8nm(表6、図11)の場合と、T1が1.5nm(表7、図12)の場合には、T2が0.5〜2.0nmの範囲内であって、T3が0.1〜1.0nmの範囲内のときに、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率が得られている。なお、表5ないし表7および図10ないし図12には、実験結果を示していないが、T2が0.5nmより大きく2.0nm未満の値のときにも、T1が0.3〜1.5nmの範囲内であって、T3が0.1〜1.0nmの範囲内のときには、RAが0.1〜0.3Ω・μmの範囲内で20%以上のMR変化率が得られることが実験により確認されている。
【0112】
以上のことから、MR素子5のスペーサ層54は、順に積層された非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543を有し、且つ、T1が0.3〜1.5nmの範囲内、T2が0.5〜2.0nmの範囲内、T3が0.1〜1.0nmの範囲内である構成が好ましい。すなわち、スペーサ層54が上記の構成である場合には、スペーサ層54が第1の酸化物半導体層542と第2の酸化物半導体層543の一方しか含まない場合(第1および第2の比較例)に比べて、RAが0.1〜0.3Ω・μmの範囲内において大きなMR変化率を得ることができる。以上の実験結果および考察から理解されるように、本実施の形態によれば、MR素子5の抵抗値(面積抵抗)を適当な大きさにし、且つMR変化率を十分に大きくすることが可能になる。
【0113】
なお、第2の酸化物半導体層543の材料であるZnOの1原子層の厚みは約0.5nmである。そのため、0.5nm未満の範囲におけるT3の値は、第2の酸化物半導体層543の全領域における平均値である。T3が0.5nm未満の場合には、第2の酸化物半導体層543においてZnOは、まだら状に分布している。MR素子5の特性を安定化させるためには、第2の酸化物半導体層543は、ZnOが均一に分布した層、すなわちT3が0.5nmである層であることが好ましい。この観点から、T3は0.5〜1.0nmの範囲内であることがより好ましい。
【0114】
また、表5ないし表7に示されるように、T1が0.3〜1.5nmの範囲内で、T2が0.5〜2.0nmの範囲内のとき、T3が0.5nm未満の場合よりも、T3が0.5〜1.0nmの範囲内である場合の方が、MR変化率が大きくなっている。この観点からも、T3は0.5〜1.0nmの範囲内であることがより好ましい。
【0115】
なお、第2の酸化物半導体層543は、例えばスパッタ法によってZnOそのものを堆積させて形成してもよいが、例えばスパッタ法によってZn層を形成した後、このZn層に対して酸化処理を施して形成してもよい。
【0116】
[第2の実施の形態]
次に、図14ないし図17を参照して、本発明の第2の実施の形態について説明する。図14は、本実施の形態に係るMR素子を含む再生ヘッドの媒体対向面に平行な断面を示す断面図である。本実施の形態における再生ヘッドは、第1の実施の形態における第1の再生シールド3および第2の再生シールド8の代りに第1の再生シールド部93および第2の再生シールド部98を備え、第1の実施の形態におけるMR素子5の代りに本実施の形態に係るMR素子105を備えている。MR素子105と第2の再生シールド部98は、第1の再生シールド部93の上に順に積層されている。MR素子105の平面形状(上方から見た形状)は、再生シールド部93,98の平面形状よりも小さい。本実施の形態における絶縁層4は、MR素子105の2つの側部と、MR素子105の媒体対向面40からより遠い後端部とを覆うと共に、第1の再生シールド部93の上面のうち、MR素子105が配置された部分以外の部分を覆っている。
【0117】
本実施の形態では、再生ヘッドは、第1の実施の形態における2つのバイアス磁界印加層6の代りに、1つのバイアス磁界印加層106(図15ないし図17参照)を備えている。このバイアス磁界印加層106は、第1の再生シールド部93と第2の再生シールド部98との間において、絶縁層4を介してMR素子105の後端部に隣接するように配置されている。図示しないが、再生ヘッドは、更に、バイアス磁界印加層106と第2の再生シールド部98との間に配置された保護層を備えている。この保護層は、Cr等の非磁性導電材料によって形成されている。
【0118】
再生ヘッドは、更に、第1の再生シールド部93および第2の再生シールド部98との間において、絶縁層4を介してMR素子105の2つの側部に隣接するように配置された2つの非磁性層90を備えている。本実施の形態における絶縁リフィル層7は、非磁性層90およびバイアス磁界印加層106の周囲に配置されている。非磁性層90は、非磁性金属材料によって形成されている。非磁性層90の材料としては、例えば、Cr、Ti、CrTi、TaまたはRuを用いることができる。
【0119】
第1の再生シールド部93は、第1の主シールド層171と、この第1の主シールド層171の上に順に積層された下地層172、第1の反強磁性層173および第1の交換結合シールド層174を有している。
【0120】
第2の再生シールド部98は、MR素子105の上に順に積層された第2の交換結合シールド層184、第2の反強磁性層183、非磁性キャップ層182および第2の主シールド層181を有している。
【0121】
第1の交換結合シールド層174は、第1の反強磁性層173と交換結合している。第2の交換結合シールド層184は、第2の反強磁性層183と交換結合している。本実施の形態では、第1の交換結合シールド層174と第2の交換結合シールド層184の一方は、非磁性導電材料よりなる非磁性中間層と、非磁性中間層を介して反強磁性的に交換結合する2つの強磁性層とを含み、第1の交換結合シールド層174と第2の交換結合シールド層184の他方は、1つ以上の強磁性層を含むが、非磁性中間層を含まない。図14には、第1の交換結合シールド層174が、非磁性中間層と、非磁性中間層を介して反強磁性的に交換結合する2つの強磁性層とを含み、第2の交換結合シールド層184が、1つ以上の強磁性層を含むが、非磁性中間層を含まない例を示している。
【0122】
この例では、第1の交換結合シールド層174は、非磁性導電材料よりなる非磁性中間層176と、非磁性中間層176を介して反強磁性的に交換結合する2つの強磁性層175,177を含んでいる。強磁性層175は、第1の反強磁性層173と非磁性中間層176との間に配置され、第1の反強磁性層173と交換結合している。強磁性層177は、非磁性中間層176とMR素子105との間に配置され、RKKY相互作用によって、非磁性中間層176を介して強磁性層175と反強磁性的に交換結合している。非磁性中間層176は、例えば、Ru、Rh、Ir、Cr、Cu、Ag、Au、Pt、Pdからなる群のうち少なくとも1種を含んでいる。また、この例では、第2の交換結合シールド層184は、非磁性中間層を含まず、強磁性層185のみを含んでいる。強磁性層185は、第2の反強磁性層183と交換結合している。なお、この例とは逆に、第2の交換結合シールド層184が、非磁性中間層と、非磁性中間層を介して反強磁性的に交換結合する2つの強磁性層とを含み、第1の交換結合シールド層174が、1つ以上の強磁性層を含むが、非磁性中間層を含まない構成であってもよい。
【0123】
主シールド層171,181および強磁性層175,177,185は、NiFe、CoFe、CoFeB、CoFeNi、FeN等の軟磁性材料によって形成されている。主シールド層171,181および強磁性層175,177,185は、いずれも、余分な磁束を吸収するというシールドとしての機能を有する。
【0124】
下地層172および非磁性キャップ層182は、非磁性導電材料によって形成されている。下地層172は、例えばTaとRuの少なくとも一方を含んでいる。非磁性キャップ層182は、例えばNiCrによって形成されている。
【0125】
反強磁性層173,183は、反強磁性材料によって形成されている。反強磁性層173,183に用いられる反強磁性材料は、非熱処理系反強磁性材料でもよいし、熱処理系反強磁性材料でもよい。
【0126】
第1の交換結合シールド層174の強磁性層175は、第1の反強磁性層173と交換結合し、これにより、強磁性層175の磁化が一定の方向を向くように、強磁性層175が単磁区化される。同様に、第2の交換結合シールド層184の強磁性層185は、第2の反強磁性層183と交換結合し、これにより、強磁性層185の磁化が一定の方向を向くように、強磁性層185が単磁区化される。強磁性層175と強磁性層185の磁化の方向は、磁界中でのアニールによって設定され、その際の磁界方向によって決定される。従って、強磁性層175と強磁性層185の磁化の方向は、同じ方向である。具体的には、強磁性層175と強磁性層185の磁化の方向は、トラック幅方向TWに平行な同じ方向である。
【0127】
第1の交換結合シールド層174において、強磁性層177は、非磁性中間層176を介して強磁性層175と反強磁性的に交換結合する。これにより、強磁性層175と強磁性層177の磁化の方向が互いに反平行になり、強磁性層177の磁化が一定の方向を向くように、強磁性層177が単磁区化される。従って、強磁性層185と強磁性層177の磁化の方向は、互いに反平行になる。
【0128】
本実施の形態に係るMR素子105は、第1の実施の形態と同様に、CPP−GMR素子になっている。第1の再生シールド部93と第2の再生シールド部98は、センス電流を、MR素子105に対して、MR素子105を構成する各層の面と交差する方向、例えばMR素子105を構成する各層の面に対して垂直な方向に流すための一対の電極を兼ねている。
【0129】
図14に示したように、MR素子105は、スペーサ層153と、第1の交換結合シールド層174(強磁性層177)とスペーサ層153との間に配置された第1の自由層152と、第2の交換結合シールド層184(強磁性層185)とスペーサ層153との間に配置された第2の自由層154とを有している。自由層152,154は、いずれも、外部磁界としての信号磁界に応じて磁化の方向が変化する強磁性層である。第1の自由層152は本発明における第1の強磁性層に対応し、第2の自由層154は本発明における第2の強磁性層に対応する。MR素子105は、更に、第1の交換結合シールド層174(強磁性層177)と第1の自由層152との間に配置された非磁性導電層151と、第2の自由層154と第2の交換結合シールド層184(強磁性層185)との間に配置された非磁性導電層155とを有している。MR素子105は、第1の交換結合シールド層174と第2の交換結合シールド層184によって2つの自由層152,154の磁化の方向が制御されるシールド結合型のMR素子になっている。
【0130】
自由層152,154は、NiFe、CoFe、CoFeB、CoFeNi、FeN等の保磁力が小さい強磁性材料によって形成されている。
【0131】
スペーサ層153の構成は、第1の実施の形態におけるスペーサ層54と同様である。すなわち、スペーサ層153は、第1の自由層152の上に順に積層された非磁性金属層153a、第1の酸化物半導体層153bおよび第2の酸化物半導体層153cを有している。非磁性金属層153a、第1の酸化物半導体層153bおよび第2の酸化物半導体層153cの構成は、第1の実施の形態における非磁性金属層541、第1の酸化物半導体層542および第2の酸化物半導体層543と同じである。第2の酸化物半導体層153cの上面は、第2の自由層154の下面に接している。
【0132】
非磁性導電層151は、第1の自由層152の下面および強磁性層177の上面に接している。非磁性導電層155は、第2の自由層154の上面および強磁性層185の下面に接している。非磁性導電層151,155は、例えばRu、Rh、Ir、Cr、Cu、Ag、Au、Pt、Pdからなる群のうち少なくとも1種を含む非磁性導電材料によって形成されている。
【0133】
第1の交換結合シールド層174の強磁性層177と第1の自由層152は、非磁性導電層151を介して、RKKY相互作用によって反強磁性的に交換結合している。従って、第1の自由層152と強磁性層177の磁化の方向は互いに反平行である。このようにして、第1の自由層152は、第1の交換結合シールド層174と磁気的に結合して磁化の方向が制御される。
【0134】
第2の交換結合シールド層184の強磁性層185と第2の自由層154は、非磁性導電層155を介して、RKKY相互作用によって反強磁性的に交換結合している。従って、第2の自由層154と強磁性層185の磁化の方向は互いに反平行である。このようにして、第2の自由層154は、第2の交換結合シールド層184と磁気的に結合して磁化の方向が制御される。
【0135】
本実施の形態では、強磁性層177と強磁性層185の磁化の方向が互いに反平行である。第1の自由層152および第2の自由層154に第1および第2の交換結合シールド層174,184に起因した磁界以外の外部からの磁界が印加されない状態では、第1の自由層152と強磁性層177の磁化の方向も互いに反平行であり、第2の自由層154と強磁性層185の磁化の方向も互いに反平行である。そのため、この状態では、第1の自由層152と第2の自由層154の磁化の方向は、互い反平行になる。
【0136】
なお、MR素子105の外部からMR素子105に対して磁界が印加されない状態において、バイアス磁界印加層106が発生するバイアス磁界以外の自由層152,154に印加される磁界は、全て、第1および第2の交換結合シールド層174,184に起因した磁界である。従って、自由層152,154に、第1および第2の交換結合シールド層174,184に起因した磁界以外の外部からの磁界が印加されない状態というのは、MR素子105の外部からMR素子105に対して磁界が印加されない状態において、バイアス磁界印加層106が発生するバイアス磁界が自由層152,154に印加されない状態である。
【0137】
なお、本実施の形態におけるMR素子105の構成は、図14に示した構成に限られない。例えば、MR素子105は、非磁性導電層151,155の代りに、それぞれ、複数の非磁性導電層と、隣接する非磁性導電層の間に配置された磁性層からなる第1および第2の結合層を有していてもよい。この場合、第1の結合層と第2の結合層における層の数は等しくする。これにより、第1の自由層152と第2の自由層154の磁化の方向を互い反平行にすることができる。
【0138】
バイアス磁界印加層106は、自由層152,154に対してバイアス磁界が印加されない状態と比較して、自由層152,154の磁化の方向が変化するように、自由層152,154に対してバイアス磁界を印加する。バイアス磁界印加層106は、自由層152の磁化の方向と自由層154の磁化の方向が直交するように、自由層152,154に対してバイアス磁界を印加するものであることが好ましい。
【0139】
ここで、図15ないし図17を参照して、本実施の形態に係るMR素子105の動作について説明する。図15ないし図17は、いずれも、MR素子105とバイアス磁界印加層106を表している。図15ないし図17において、記号“B”を付した矢印は、バイアス磁界印加層106が発生するバイアス磁界を表している。記号“M1s”を付した矢印は、第1および第2の交換結合シールド層174,184に起因した磁界以外の外部からの磁界(バイアス磁界を含む)が印加されない状態における第1の自由層152の磁化の方向を表している。記号“M2s”を付した矢印は、上記の外部からの磁界が印加されていない状態における第2の自由層154の磁化の方向を表している。記号“M1”を付した矢印は、バイアス磁界Bが印加されている状態における第1の自由層152の磁化の方向を表している。記号“M2”を付した矢印は、バイアス磁界Bが印加されている状態における第2の自由層154の磁化の方向を表している。
【0140】
図15に示したように、自由層152,154に外部からの磁界が印加されていない状態では、自由層152,154の磁化の方向は互いに反平行である。自由層152,154にバイアス磁界Bが印加されているが信号磁界は印加されていない状態では、自由層152,154の磁化の方向が非反平行になる。この状態において、第1の自由層152の磁化の方向と第2の自由層154の磁化の方向は、いずれも媒体対向面40に対して45度の角度をなし、自由層152,154の磁化の方向がなす相対角度θは90度となることが好ましい。
【0141】
図16は、自由層152,154にバイアス磁界Bが印加され、且つ、バイアス磁界Bと同じ方向の信号磁界Hが印加されている状態を表している。この状態では、第1の自由層152の磁化の方向が媒体対向面40に対してなす角度と、第2の自由層154の磁化の方向が媒体対向面40に対してなす角度は、いずれも、図15に示した状態に比べて大きくなる。その結果、自由層152,154の磁化の方向がなす相対角度θは、図15に示した状態に比べて小さくなる。
【0142】
図17は、自由層152,154にバイアス磁界Bが印加され、且つ、バイアス磁界Bとは反対方向の信号磁界Hが印加されている状態を表している。この状態では、第1の自由層152の磁化の方向が媒体対向面40に対してなす角度と、第2の自由層154の磁化の方向が媒体対向面40に対してなす角度は、いずれも、図15に示した状態に比べて小さくなる。その結果、自由層152,154の磁化の方向がなす相対角度θは、図15に示した状態に比べて大きくなる。
【0143】
このように、自由層152,154の磁化の方向がなす相対角度は、信号磁界に応じて変化し、その結果、MR素子105の抵抗値が変化する。従って、このMR素子105の抵抗値を検出することによって、信号磁界を検出することができる。MR素子105の抵抗値は、MR素子105にセンス電流を流したときにMR素子105において発生する電位差より求めることができる。このようにして、MR素子105によって、記録媒体に記録されている情報を再生することができる。
【0144】
次に、本実施の形態に係るMR素子105の効果について説明する。本実施の形態では、第1の交換結合シールド層174の強磁性層175が第1の反強磁性層173と交換結合し、強磁性層177が非磁性中間層176を介して強磁性層175と反強磁性的に交換結合することにより、強磁性層177の磁化の方向が設定される。一方、第2の交換結合シールド層184の強磁性層185が第2の反強磁性層183と交換結合することにより、強磁性層185の磁化の方向が設定される。その結果、強磁性層185と強磁性層177の磁化の方向は、互いに反平行になる。また、第1の自由層152は強磁性層177と磁気的に結合し、第2の自由層154は強磁性層185と磁気的に結合する。具体的には、第1の自由層152は、非磁性導電層151を介して強磁性層177と反強磁性的に交換結合する。また、第2の自由層154は、非磁性導電層155を介して強磁性層185と反強磁性的に交換結合する。その結果、2つの自由層152,154に第1および第2の交換結合シールド層174,184に起因した磁界以外の外部からの磁界が印加されない状態において、2つの自由層152,154の磁化の方向が互いに反平行にされる。このように、本実施の形態によれば、スペーサ層153を介した2つの自由層の反強磁性的結合を利用することなく、外部からの磁界が印加されない状態で2つの自由層152,154の磁化の方向を互いに反平行にすることができる。そのため、本実施の形態では、スペーサ層153の材料や厚みが、2つの自由層の反強磁性的結合を利用する場合のように限定されることがない。
【0145】
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
【0146】
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、第2の実施の形態のように2つの自由層を備えたMR素子において、外部からの磁界が印加されない状態で2つの自由層の磁化の方向を互いに反平行にする方法は、第2の実施の形態に示した方法に限らない。例えば、硬磁性層を用いて、あるいは形状磁気異方性を利用して、第1の再生シールド部中の第1の強磁性層と第2の再生シールド部中の第2の強磁性層の磁化の方向を反平行にし、一方の自由層を第1の強磁性層に磁気的に結合させ、他方の自由層を第2の強磁性層に磁気的に結合させてもよい。
【0147】
また、実施の形態では、基体側に再生ヘッドを形成し、その上に、記録ヘッドを積層した構造の磁気ヘッドについて説明したが、この積層順序を逆にしてもよい。また、読み取り専用として用いる場合には、磁気ヘッドを、再生ヘッドだけを備えた構成としてもよい。
【0148】
また、本発明は、磁気記録装置における磁気ヘッドの再生ヘッドとして利用されるMR素子に限らず、発振器、MRAM、磁気センサー等の種々の用途のMR素子全般に適用することができる。
【符号の説明】
【0149】
5…MR素子、51…下地層、52…反強磁性層、53…固定層、54…スペーサ層、55…自由層、56…保護層、541…非磁性金属層、542…第1の酸化物半導体層、543…第2の酸化物半導体層。

【特許請求の範囲】
【請求項1】
第1の強磁性層と、第2の強磁性層と、前記第1の強磁性層と第2の強磁性層との間に配置されたスペーサ層とを備え、
磁気的信号検出用の電流が、前記各層の面と交差する方向に流される磁気抵抗効果素子であって、
前記スペーサ層は、順に積層された非磁性金属層、第1の酸化物半導体層および第2の酸化物半導体層を有し、
前記非磁性金属層は、Cuよりなり、0.3〜1.5nmの範囲内の厚みを有し、
前記第1の酸化物半導体層は、Ga酸化物半導体よりなり、0.5〜2.0nmの範囲内の厚みを有し、
前記第2の酸化物半導体層は、Zn酸化物半導体よりなり、0.1〜1.0nmの範囲内の厚みを有することを特徴とする磁気抵抗効果素子。
【請求項2】
前記Ga酸化物半導体はGaであり、前記Zn酸化物半導体はZnOであることを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項3】
前記第2の酸化物半導体層は、0.5〜1.0nmの範囲内の厚みを有することを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項4】
前記第1の強磁性層は、外部磁界に応じて磁化の方向が変化する自由層であり、前記第2の強磁性層は、磁化の方向が固定された固定層であることを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項5】
前記第1および第2の強磁性層は、いずれも、外部磁界に応じて磁化の方向が変化する自由層であり、外部磁界に応じて第1の強磁性層の磁化の方向と第2の強磁性層の磁化の方向との相対角度が変化することを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項6】
記録媒体に対向する媒体対向面と、前記媒体対向面の近傍に配置された請求項1記載の磁気抵抗効果素子とを備えたことを特徴とする薄膜磁気ヘッド。
【請求項7】
請求項6記載の薄膜磁気ヘッドを含み、前記記録媒体に対向するように配置されるスライダと、前記スライダを弾性的に支持する支持装置とを備えたことを特徴とするヘッドアセンブリ。
【請求項8】
前記記録媒体と、請求項6記載の薄膜磁気ヘッドと、前記薄膜磁気ヘッドを支持すると共に前記記録媒体に対して位置決めする位置決め装置とを備えたことを特徴とする磁気記録装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−15489(P2012−15489A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2011−94479(P2011−94479)
【出願日】平成23年4月20日(2011.4.20)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】