説明

Fターム[5F101BD07]の内容

不揮発性半導体メモリ (42,765) | 素子構造 (12,113) | メモリセル(センサ) (3,677) | MOSトランジスタ (3,641) | SD領域 (1,220) | LDD等高耐圧構造(メモリセルの) (599)

Fターム[5F101BD07]に分類される特許

101 - 120 / 599


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】第1の信号線と、第2の信号線と、メモリセルと、電位変換回路と、を有し、メモリセルは、第1のゲート電極、第1のソース電極、第1のドレイン電極、及び第1のチャネル形成領域を含む第1のトランジスタと、第2のゲート電極、第2のソース電極、第2のドレイン電極、及び第2のチャネル形成領域を含む第2のトランジスタと、容量素子と、を有し、第1のチャネル形成領域は、第2のチャネル形成領域とは、異なる半導体材料を含んで構成され、第2のドレイン電極と、容量素子の電極の一方と、第1のゲート電極と、は電気的に接続され、第2のゲート電極は、第2の信号線を介して電位変換回路と電気的に接続される。 (もっと読む)


【課題】従来の半導体記憶装置では、十分に半導体チップの面積を削減することができない問題があった。
【解決手段】本発明の半導体記憶装置は、半導体基板の平坦部に形成されたドレイン領域13と、半導体基板に形成された凸部の上端部に形成されたソース領域10と、ドレイン領域13の一部と重なる領域であって、かつ、平坦部の上層に形成されるコントロールゲート12と、コントロールゲート12と隣り合った領域であって、平坦部、凸部の壁面及びソース領域10の一部を覆う領域に形成されるフローティングゲート11と、を有する。 (もっと読む)


【課題】専有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】書き込み用トランジスタと読み出し用トランジスタで、共通のビット線を使用することで、単位メモリセル当たりの配線数を削減する。情報の書き込みは、書き込み用トランジスタをオン状態とすることにより、書き込み用トランジスタのソース電極またはドレイン電極の一方と、読み出し用トランジスタのゲート電極が電気的に接続されたノードにビット線の電位を供給し、その後、書き込み用トランジスタをオフ状態とすることにより、ノードに所定量の電荷を保持させる。情報の読み出しは、読み出し用トランジスタのソース電極またはドレイン電極の一方と接続された読み出し信号線に、所定の読み出し用の電位を供給し、その後、ビット線の電位を検知することで行う。 (もっと読む)


【課題】半導体装置の信頼性を向上する。
【解決手段】メモリセルMCは、半導体基板1の主面上のゲート絶縁膜5を介して設けられたコントロールゲート電極CGと、コントロールゲート電極CGの側面および半導体基板1の主面に沿って設けられたONO膜9と、ONO膜9を介してコントロールゲート電極CGの側面および半導体基板1の主面上に設けられたメモリゲート電極MGとを有する。コントロールゲート電極CGおよびメモリゲート電極MGの上部には、シリサイド膜15およびシリサイド膜15の表面の酸化によって形成された絶縁膜51が設けられている。 (もっと読む)


【課題】ゲート電極の不純物分布のバラツキを抑え、STIエッジ部分への電界集中をより効果的に制御でき、実効チャネル幅が狭くなることを抑制できる半導体装置およびその製造方法を提供する。
【解決手段】P型のシリコン基板10の一主面11に、トレンチ22と絶縁物24とを有する素子分離領域25と、素子分離領域25に囲まれた素子領域12であって、シリコン基板10の側面上部17が、トレンチ25に露出した素子領域12を形成し、ゲート絶縁膜40をシリコン基板10の上面14から側面上部17に延在して形成し、N型ポリシリコン32とN型ポリシリコン32の両側のP型ポリシリコン34と、P型ポリシリコン34の下側の側面上部17に沿って設けられたN型ポリシリコン36とを有するゲート電極30を形成する。 (もっと読む)


【課題】半導体装置の性能を向上させ、製造歩留りを向上させる。
【解決手段】メモリセル30が複数アレイ状に配置され、X方向に並ぶメモリセル30の選択ゲート電極8は選択ゲート線9によって接続され、メモリゲート電極13はメモリゲート線14によって接続される。ソース領域20を介して隣接するメモリセル30のメモリゲート電極13にそれぞれ接続されたメモリゲート線14同士は電気的に接続されていない。選択ゲート線9は、X方向に延在する第1の部分9aと、一端が第1の部分9aに接続してY方向に延在する第2の部分9bを有している。メモリゲート線14は、選択ゲート線9の側壁上に絶縁膜を介して形成され、選択ゲート線9の第2の部分9b上から素子分離領域上にかけてX方向に延在するコンタクト部14aを有し、コンタクト部14a上に形成されたコンタクトホール23dを埋めるプラグを介して配線に接続される。 (もっと読む)


【課題】オフ状態のソースとドレイン間のリーク電流の低いトランジスタを書き込みトランジスタに用いて、データを保存する半導体装置を提供する。
【解決手段】書き込みトランジスタのドレインと読み出しトランジスタのゲート、および、前記ドレインとキャパシタの一方の電極を接続した記憶セルを複数用いて形成されたマトリクスにおいて、書き込みトランジスタのゲートを書き込みワード線に、書き込みトランジスタのソースを書き込みビット線に、読み出しトランジスタのソースとドレインとを、それぞれ、読み出しビット線及びバイアス線に接続する。さらに、キャパシタの他方の電極を読み出しワード線に接続する。配線数を減らすために、読み出しビット線を書き込みビット線や他の列のバイアス線で代用する。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】酸化物半導体OSを用い、オフ状態でのソースとドレイン間のリーク電流(オフ電流)が少ない書き込み用トランジスタ162、書き込み用トランジスタ162と異なる半導体材料を用いた読み出し用トランジスタ160及び容量素子164を含む不揮発性のメモリセルを有する半導体装置において、メモリセルへの情報の書き込みは、書き込み用トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方と、読み出し用トランジスタ160のゲート電極とが電気的に接続されたノードFGに電位を供給し、ノードFGに所定量の電荷を保持させることで行う。書き込みを1×10回行う前後において、メモリセルのメモリウィンドウ幅の変化量は2%以内である。 (もっと読む)


【課題】異なる特性の半導体素子を一体に有しつつ、高集積化が実現可能な、新たな構成の半導体装置を提供することを目的の一とする。
【解決手段】第1の半導体材料が用いられた第1のチャネル形成領域と、第1のゲート電極と、を含む第1のトランジスタと、第1のゲート電極と一体に設けられた第2のソース電極および第2のドレイン電極の一方と、第2の半導体材料が用いられ、第2のソース電極および第2のドレイン電極と電気的に接続された第2のチャネル形成領域と、を含む第2のトランジスタと、を備えた半導体装置である。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体を用い、オフ状態でのソースとドレイン間のリーク電流(オフ電流)が少ない書き込み用トランジスタ、該書き込み用トランジスタと異なる半導体材料を用いた読み出し用トランジスタ及び容量素子を含む不揮発性のメモリセルを有する半導体装置を提供する。該メモリセルへの情報の書き込み及び書き換えは、書き込み用トランジスタをオン状態とすることにより、書き込み用トランジスタのソース電極またはドレイン電極の一方と、容量素子の電極の一方と、読み出し用トランジスタのゲート電極とが電気的に接続されたノードに電位を供給し、その後、書き込み用トランジスタをオフ状態とすることにより、ノードに所定量の電荷を保持させることで行う。 (もっと読む)


【課題】ライトディスターブ(WDT)が発生しない不揮発性半導体記憶装置を提供する。
【解決手段】第1方向に延伸する第1素子分離絶縁領域42と、その第1素子分離絶縁領域42と異なる第2素子分離絶縁領域42と、第1メモリセル2と、第2メモリセル15とを具備する不揮発性半導体記憶装置1を構成する。ここで、その第1メモリセル2は、第2方向に延伸する第1コントロールゲート21を備える。その第2メモリセル15は、その第1コントロールゲート21に対向する第2コントロールゲート35を備える。その第1コントロールゲート21は、第1引き出し電極3に接続されている。その第1引き出し電極3は、その第2コントロールゲート35の側面から離れた位置のその第1素子分離絶縁領域42を掘り下げた第1掘り下げ領域7の内部に設けられるものである。 (もっと読む)


【課題】比誘電率の低下を軽減しつつリーク電流値を低減し、スパッタ率の低下による堆積速度の減少を抑制し、かつ、面内均一性に優れた誘電体膜の製造方法を提供すること。
【解決手段】本発明の一実施形態に係る誘電体膜の製造方法は、基板上に、AlとSiとOを主成分とする金属酸化物である誘電体膜を形成する誘電体膜の製造方法であって、Al元素とSi元素のモル比率Si/(Si+Al)が0<(B/(A+B))≦0.1であり、非晶質構造を有する金属酸化物を形成する工程と、該非晶質構造を有する金属酸化物に1000℃以上のアニール処理を施し、結晶相を含む金属酸化物を形成する工程と、を備える。 (もっと読む)


【課題】スプリットゲート型のMONOSメモリセルを有する半導体記憶装置において、SSI方式による書込み時のディスターブ耐性を向上させる。また、非選択メモリセルのディスターブ耐性が向上することにより、メモリモジュールの面積を低減させる。
【解決手段】メモリゲート電極12の側面において、電荷蓄積膜9と絶縁膜11との間に絶縁膜10を形成し、メモリゲート電極12側面の絶縁膜10および11の合計の厚さを、メモリゲート電極12下部の絶縁膜11の厚さよりも厚く形成する。 (もっと読む)


【課題】裏打ち領域におけるコンタクトホール形成領域を最適化することにより、記憶密度が向上された不揮発性半導体記憶装置及びその製造方法を提供すること。
【解決手段】本発明は、裏打ち領域2と、X方向に並ぶ2つのメモリセル領域1に挟まれる裏打ち領域2を有する。メモリセル領域1はメモリセル50が配置される。メモリセル50はY方向に離間された2つのメモリゲート12と、これらのサイドウォールである2つの選択ゲート17と、を有する。裏打ち領域2は、メモリセル領域1でX方向に並ぶメモリセル50の選択ゲート17のそれぞれと接続される、2本の選択ゲート線6を有する。それぞれ選択ゲート線6は、他方に向かって突出するコンタクトホール形成領域6aを有する。それぞれのコンタクトホール形成領域6aはX方向に離間されて形成されている。 (もっと読む)


半導体層(12)に半導体デバイス(10)を形成する方法が提供される。方法は、半導体層(12)の上方に選択ゲート誘電体層(14)を形成すること、選択ゲート誘電体層(14)の上方に選択ゲート層(16)を形成すること、選択ゲート層の少なくとも一部分を除去することによって、選択ゲート層(16)の側壁を形成することを含む。方法は、選択ゲート層(16)の側壁の少なくとも一部分に、および選択ゲート層(16)の少なくとも一部分の下に、犠牲層(22)を成長させること、犠牲層(22)を除去して、選択ゲート層の側壁の少なくとも一部分の表面および選択ゲート層の下の半導体層の表面を露出させることをさらに含む。方法は、制御ゲート誘電体層(28)、電荷蓄積層(32)、および制御ゲート層(34)を形成することをさらに含む。 (もっと読む)


【課題】新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】第1の配線と、第2の配線と、第3の配線と、第4の配線と、第1のゲート電極、第1のソース電極、および第1のドレイン電極を有する第1のトランジスタと、第2のゲート電極、第2のソース電極、および第2のドレイン電極を有する第2のトランジスタと、を有し、第1のトランジスタは、半導体材料を含む基板に設けられ、第2のトランジスタは酸化物半導体層を含んで構成された半導体装置である。 (もっと読む)


【課題】N+型ソース層とフローティングゲートとのカップリング比を高くしてプログラム特性を改善すると共にメモリーセルの面積の縮小化を図る。
【解決手段】N+型ソース層4の両側にトレンチ3を形成する。トレンチ3の側壁は2つの素子分離層STI2の端面と平行なトレンチ側壁2a、トレンチ側壁2bと、STI2に垂直な面からなるトレンチ側壁3a、及びトレンチ側壁3aと平行でないトレンチ側壁3bから構成される。かかる構成のトレンチ3の上部からトレンチ側壁3aに平行で、且つP型ウエル層1に垂直又は角度をもった砒素イオン等のイオン注入を行い、トレンチ3底面からトレンチ側壁3bに延在するフローティングゲートFG6と広い面積で対峙するN+型ソース層4を形成する。 (もっと読む)


【課題】電荷蓄積膜を用いる不揮発性記憶用MOS型トランジスタと、これを選択するMOS型トランジスタが隣接するスプリットゲート構造を有する不揮発性メモリセルにおいて、電荷保持特性を向上し、ゲート電極を低抵抗化する。
【解決手段】電荷蓄積膜のコーナー部の薄膜化を抑制して電荷保持特性を向上するために、選択ゲート電極15の側壁にテーパーを設ける。また、自己整合で形成するゲート電極を低抵抗化するシリサイドを安定に行うため、選択ゲート電極15の側壁をリセスさせる。もしくは、自己整合ゲート電極上部18と選択ゲート電極上部65の間に段差を設ける。 (もっと読む)


【課題】酸化物半導体層を含むトランジスタを有する不揮発性メモリにおいて、保持された情報を容易に消去できる不揮発性メモリを提供する。
【解決手段】不揮発性メモリは、第1のトランジスタ20及び第2のトランジスタ21を有するメモリセルを有し、第1のトランジスタ20は第1のチャネル、第1のゲート電極、第1のソース電極及び第1のドレイン電極を有し、第2のトランジスタ21は酸化物半導体からなる第2のチャネル、第2のゲート電極、第2のソース電極及び第2のドレイン電極を有し、第2のソース電極及び第2のドレイン電極の一方は第1のゲート電極と電気的に接続され、メモリセルへの情報の書き込み及び消去は、第2のソース電極及び第2のドレイン電極の一方と、第1のゲート電極との間のノードの電位を高くすることにより情報が書き込まれ、第2のチャネルに紫外線を照射して、ノードの電位を低くすることにより情報が消去される。 (もっと読む)


【課題】新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】第1の配線と、第2の配線と、第3の配線と、第4の配線と、第1のゲート電極、第1のソース電極、および第1のドレイン電極を有する第1のトランジスタと、第2のゲート電極、第2のソース電極、および第2のドレイン電極を有する第2のトランジスタと、を有し、第1のトランジスタは、半導体材料を含む基板に設けられ、第2のトランジスタは酸化物半導体層を含んで構成された半導体装置である。 (もっと読む)


101 - 120 / 599