説明

Fターム[5F102GA01]の内容

接合型電界効果トランジスタ (42,929) | 集積化 (1,005) | FETとFET (424)

Fターム[5F102GA01]の下位に属するFターム

Fターム[5F102GA01]に分類される特許

1 - 20 / 262



【課題】通過損失を低減するためにオン状態時の抵抗を小さくしても、十分なアイソレーション量を確保する高周波スイッチを得る。
【解決手段】トランジスタ5a,5bのオフ容量Coffと同一の容量Ccを有するクロスカップルキャパシタ8a,8bを設ける。
クロスカップルキャパシタ8a,8bにより、トランジスタ5a,5bのオフ容量Coffをキャンセルすることができるので、アイソレーションを大きく改善することができる。したがって、通過損失を低減するためにトランジスタ5a,5bのオン抵抗Ronを小さくしても、十分なアイソレーション量を確保することができる。 (もっと読む)


【課題】半導体チップを実装できる幅を増大し、実装基板上を有効に使用可能な高周波用半導体装置を提供する。
【解決手段】導体ベースプレートと、導体ベースプレート上に配置されたマルチセル構成の半導体チップと、導体ベースプレート上に配置され、半導体チップを内在する矩形のキャビティを形成する金属壁と、金属壁の入出力部に設けられた貫通孔とを備え、半導体チップを、金属壁に囲まれた矩形のキャビティ内において、半導体チップの長手方向が、貫通孔の設けられていない金属壁の延伸方向から0度より大で、90度より小の所定の角度に配置した半導体装置。 (もっと読む)


【課題】ボンディングワイヤの長さを長くすることなくインダクタンスの値を大きくできる高周波用半導体装置を提供する。
【解決手段】高周波半導体装置1は、マルチセル構成の半導体チップ24と、整合回路と、半導体チップ24と整合回路間に並列に接続された複数本のボンディングワイヤ12、14とを備え、複数本のボンディングワイヤ12、14は、半導体チップ24に対して平面上で90°以下の所定の角度を有する。 (もっと読む)


【課題】 電気的特性を向上させた高周波回路装置を提供する。
【解決手段】 高周波回路装置は、一端同士1331,1341が互いに離間して対向した2つの伝送線路133,134と、2つの伝送線路の一方の一端に実装され、該実装面となる下面電極30と、該実装時に下面電極の上方に位置する上面電極32を備えるキャパシタCと、2つの伝送線路の対向する一端同士の間の領域に配置され、一端同士を電気的に接続する抵抗素子Rと、キャパシタの上面電極と2つの伝送線路の他方との間を電気的に接続する接続導体135とを備える。 (もっと読む)


【課題】GaN系半導体を用い耐圧の異なるトランジスタを作り分ける。
【解決手段】基板1上方に第1、第2GaN系半導体層3,4、電極層5、第1絶縁膜6を積層し、電極層5及び第1絶縁膜6をパターニングして、第1ゲート電極5と第1絶縁膜6が積層された第1構造と、第2ゲート電極5と第1絶縁膜6が積層された第2構造を形成し、第1、第2構造を覆って第2絶縁膜7を形成し、第1ゲート電極5とその両側領域を露出する第1開口8SD、第2ゲート電極5を挟んでそれぞれ一方側、他方側に配置された第2、第3開口8S,8Dを有する第1マスクを用いて、第2絶縁膜7を異方性エッチングし、第1開口内8SDにおいて、第1構造の側面上にサイドウォール絶縁膜7SWを残しつつ、第1ゲート電極を挟んでコンタクトホール9S,9Dを形成し、第2、第3開口内に、それぞれコンタクトホール9S,9Dを形成し、各コンタクトホールに電極を形成する。 (もっと読む)


【課題】基板の自由度があり、待機時(光非照射時)の電力消費が小さく、また光照射時のS/Nが大きい受光素子を提供することである。
【解決手段】紫外線が透過する材料をFETの電極として用い、また、電子走行領域をAlGaNとGaNとのヘテロ界面等のGaN系膜同士のヘテロ界面とする。 (もっと読む)


【課題】安定した高速動作を実現しつつ、製造工程も簡素化することが可能な論理回路を提供すること。
【解決手段】この論理回路1は、バイアス電源とグラウンドとの間で直列に接続され、それぞれのゲート端子に入力電圧が印加される第1及び第2のFET2A,2Bを備える論理回路であって、第1及び第2のFET2A,2BのうちのFET2Aは、ゲート端子が接続されるゲート電極膜17と、半導体材料からなるチャネル層12と、ゲート電極膜17とチャネル層12との間に配置され、電荷を蓄積及び放出する電荷蓄積構造を含む電荷蓄積層16と、を有する。 (もっと読む)


【課題】低周波雑音が低減されるとともに、素子面積の小さい半導体装置及びその製造方法を製造コストを増大させずに提供する。
【解決手段】半導体装置は、第1導電型の下部ゲート領域4と、第2導電型のチャネル領域3と、第1導電型の上部ゲート領域2と、チャネル領域3の両側に位置する第2導電型のソース及びドレイン領域8と、上部ゲート領域2上に形成されたゲート電極6と、ゲート電極6の両側面上に形成されたサイドウォールスペーサ7とを有するJFET70を備える。上部ゲート領域2とソース及びドレイン領域8とは、チャネル領域3のうちサイドウォールスペーサ7の下に位置する部分を挟んで互いに離間しており、ソース及びドレイン領域8は、ゲート長方向におけるゲート電極6の両側方であってサイドウォールスペーサ7の外側を含む領域に形成されている。 (もっと読む)


【課題】選択された物理的寸法、形状、組成、及び、空間的配置を有する高品質印刷可能半導体素子の製造、転写、組み立てのための高歩留りの経路を与える。
【解決手段】大面積基板及び/又はフレキシブル基板を含む基板上へのミクロサイズ及び/又はナノサイズの半導体構造の配列の高精度の位置合わせ転写及び集積を行なう。また、バルクシリコンウエハ等の低コストバルク材料から印刷可能半導体素子を形成する方法、及び、広範囲の機能的な半導体デバイスを形成するための多目的で商業的に魅力的な印刷ベースの製造ブラットフォームを可能にするスマート材料処理を行う。 (もっと読む)


【課題】第1の極性を有する第1の化合物半導体層と共にこれと逆極性(第2の極性)の第2の化合物半導体層を用い、化合物半導体層の再成長をすることなく、第2の極性に対応した導電型の含有量が実効的に、容易且つ確実に所期に制御された、複雑な動作を可能とする信頼性の高い高耐圧の化合物半導体装置を得る。
【解決手段】第1の極性を有する電子走行層2bと、電子走行層2bの上方に形成された第2の極性を有するp型キャップ層2eと、p型キャップ層2e上に形成された第1の極性を有するn型キャップ層2fとを有しており、n型キャップ層2fは、厚みの異なる部位2fa,2fbを有する。 (もっと読む)


【課題】ホモエピタキシャルLED、LD、光検出器又は電子デバイスを形成するために役立つGaN基板の形成方法の提供。
【解決手段】約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板上に配設された1以上のエピタキシャル半導体層を含むデバイス。かかる電子デバイスは、発光ダイオード(LED)及びレーザーダイオード(LD)用途のような照明用途、並びにGaNを基材とするトランジスター、整流器、サイリスター及びカスコードスイッチなどのデバイスの形態を有し得る。また、約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板を形成し、該基板上に1以上の半導体層をホモエピタキシャルに形成する方法及び電子デバイス。 (もっと読む)


【課題】内蔵する環流ダイオードの順方向電圧が低く、高耐圧で、低オン抵抗の、ノーマリオフ型の窒化物半導体装置を提供する。
【解決手段】窒化物半導体装置は、基板1、第1の窒化物半導体層3、第2の窒化物半導体層4、及び第2の窒化物半導体層上4に設けられた、ソース電極5、ドレイン電極6、第1のゲート電極9、ショットキー電極10、第2のゲート電極12、を備える。第2の窒化物半導体層4と第1の窒化物半導体層3との界面には、2次元電子ガスが形成される。第1のゲート電極9はノーマリオフ型FET20のゲート電極であり、ソース電極5とドレイン電極6との間に設けられる。ショットキー電極10は、第1のゲート電極9とドレイン電極6との間に設けられる。第2のゲート電極12はノーマリオン型FET21のゲート電極であり、ショットキー電極10とドレイン電極6との間に設けられる。 (もっと読む)


【課題】スイッチングノイズ発生を抑制できるノーマリオフ形の窒化物半導体装置の提供。
【解決手段】本発明の実施形態の窒化物半導体装置は、AlGa1−xN(0≦x<1)からなる第1の半導体層4と、AlGa1−yN(0<y≦1、x<y)からなる第2の半導体層5と、導電性基板2と、第1の電極6と、第2の電極8と、制御電極7と、を備える。第2の半導体層は第1の半導体層に直接接合する。第1の半導体層は、導電性基板に電気的に接続される。第1の電極及び第2の電極は、第2の半導体層の表面に電気的に接続される。制御電極は、第1の電極と第2の電極との間の第2の半導体層の前記表面上に設けられる。第1の電極は、Si−MOSFET102のドレイン電極8aに電気的に接続される。制御電極は、前記MOSFETのソース電極6aに電気的に接続される。導電性基板は、前記MOSFETのゲート電極7aに電気的に接続される。 (もっと読む)


【課題】p型のGaN系半導体装置を提供する。
【解決手段】第1導電型のキャリアガスが発生した第1チャネル層106と、第1チャネル層106上に、第1チャネル層106よりバンドギャップが大きいGaN系半導体で形成されたバリア層110と、バリア層110上に、バリア層110よりバンドギャップが小さいGaN系半導体で形成され、第2導電型のキャリアガスが発生した第2チャネル層112と、第2チャネル層112にオーミック接続する第1ソース電極118と、第2チャネル層にオーミック接続する第1ドレイン電極120と、第1ソース電極118及び第1ドレイン電極120の間に形成された第1ゲート電極122と、を備え、第2導電型のキャリアガスのキャリア濃度が、第1ゲート電極122の下の領域で、第1ソース電極118及び第1ドレイン電極120の間の他の領域より低く、かつ、第1ゲート電極122により制御されるGaN系半導体装置。 (もっと読む)


【課題】ゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、ノーマリオフの双方向動作が可能な窒化物系半導体装置を提供する。
【解決手段】窒化物系半導体素子10は、第1MOSFET部30及び第2MOSFET部31を備えており、第1ゲート電極26と第2ゲート電極27との間に設けられた第1SBD金属電極28及び第2SBD金属電極29がAlGaN層20とショットキー接合されている。第1SBD金属電極28と第1電極24とが接続されており、電気的に短絡していると共に、第2SBD金属電極29と第2電極25とが接続されており、電気的に短絡している。 (もっと読む)


【課題】トランジスタのゲートへの電流を防ぐ。
【解決手段】ノーマリーオン型の第1トランジスタと、ドレインが、第1トランジスタのソースと接続され、第1トランジスタとカスコード接続されたノーマリーオフ型の第2トランジスタと、第2トランジスタのソースと第1トランジスタのゲートとの間に設けられた、第2トランジスタのソースから第1トランジスタのゲートへと流れる電流を抑制する第1電流抑制部とを備えるトランジスタ回路を提供する。 (もっと読む)


【課題】ダイオード部とトランジスタ部の面積比率を自由に設定することが可能な窒化物系半導体装置を提供することを目的とする。
【解決手段】第1HEMT部30及び第2HEMT部31から成るトランジスタ部1と、第1電極24と電気的に短絡された第1ショットキー電極28及び第1ゲート電極26と電気的に第2ショットキー電極29から成るダイオード部2と、を備えて構成されている。また、第1電極24と第2電極25との間の領域に第1電極24に沿って、第1ゲート電極26及び第1ショットキー電極28が交互に形成され、かつ、第2電極25に沿って、第2ゲート電極27及び第2ショットキー電極29が交互に形成されている。さらに、第1ゲート電極26と第2ゲート電極27とは、対向して形成されており、第1ショットキー電極28と第2ショットキー電極29とは対向して形成されている。 (もっと読む)


【課題】オン抵抗が低く高速動作が可能でありノーマリオフ特性を有し、かつ一の基板を用いて構成された炭化珪素半導体装置を提供する。
【解決手段】第1、第2、第4および第5不純物領域11、12、21、22は第1導電型を有し、第3不純物領域13は第2導電型を有する。第1〜第3不純物領域11〜13は第1導電型の第1層34に達する。第4および第5不純物領域21、22は第2層35上に設けられている。第1〜第5電極S1、D1、G1、S2、D2は第1〜第5不純物領域のそれぞれの上に設けられている。第1および第5電極S1、D2の間と、第3および第4電極G1、S2の間とは電気的に接続されている。第4および第5不純物領域21、22の間を覆うゲート絶縁膜I2上に第6電極G2が設けられている。 (もっと読む)


【課題】スイッチング素子のソースおよびドレイン間に還流ダイオードが接続された構造を有する炭化珪素半導体装置を一の炭化珪素基板を用いて提供する。
【解決手段】第1層34は第1導電型を有する。第2層35は、第1層34の一部が露出されるように第1層34上に設けられ、第2導電型を有する。第1〜第3不純物領域は、第2層35を貫通して第1層34に達する。第1および第2不純物領域11、12の各々は第1導電型を有する。第3不純物領域13は、第1および第2不純物領域11、12の間に配置され、かつ第2導電型を有する。第1〜第3電極S1、D1、G1は、第1〜第3不純物領域11〜13のそれぞれの上に設けられている。ショットキー電極SKは、第1層34の一部の上に設けられ、第1電極S1に電気的に接続されている。 (もっと読む)


1 - 20 / 262