説明

Fターム[5F102GJ04]の内容

接合型電界効果トランジスタ (42,929) | 基板 (5,097) | 半導体材料(半絶縁性材料も含む) (3,925) | 3−5族 (1,455)

Fターム[5F102GJ04]の下位に属するFターム

GaAs (578)
InP (130)

Fターム[5F102GJ04]に分類される特許

161 - 180 / 747


【課題】最小ループと2セルループのオッドモード発振を共に抑制する高周波回路を提供する。
【解決手段】半導体基板上に並列に配列された複数のトランジスタと、第1の絶縁基板上に配置され、複数のトランジスタのゲート端子電極にそれぞれ接続された複数の入力整合回路と、第1の絶縁基板上に配置され、入力整合回路に隣接して配置された入力側第4発振抑制抵抗と、入力側第4発振抑制抵抗に直列接続された入力側第1キャパシタと、隣接する入力整合回路間を繋ぐ伝送線路上の点と入力側第1キャパシタ間に接続された入力側第1インダクタとを有する入力側発振抑制回路とを備え、入力側第1インダクタのインダクタンス値をL1、入力側第1キャパシタのキャパシタンス値をC1とすると、1/{2π(L1×C1)1/2}で表される入力側第1インダクタと入力側第1キャパシタの共振周波数が、2セルループの発振周波数fosc2に等しい高周波回路。 (もっと読む)


【課題】 開口部が設けられ、当該開口部に二次元電子ガスで形成されるチャネルを備える縦型半導体装置の耐圧性能を向上させることを目的とする。
【解決手段】 GaN系積層体15は、n−型GaNドリフト層4/p型GaNバリア層6/n+型GaNコンタクト層7、を有し、開口部28は表層からn−型GaNドリフト層4内にまで届いていて、開口部の壁面および底部を覆うように位置する、電子走行層22および電子供給層26を含む再成長層27と、開口部の周囲に位置するソース電極Sと、開口部の再成長層上に位置するゲート電極Gと、開口部の底部に位置する底部絶縁膜37とを備えることを特徴とする。 (もっと読む)


【課題】開口部にチャネルを備える縦型半導体装置において、高周波特性を向上することができる半導体装置およびその製造方法を提供する。
【解決手段】 n型GaN系ドリフト層4/p型GaN系バリア層6/n型GaN系コンタクト層7、を有し、開口部28は表層からn型GaN系ドリフト層内にまで届いており、該開口部を覆うように位置する電子走行層22および電子供給層26を含む再成長層27と、ソース電極Sと、ドレイン電極Dと、再成長層上に位置するゲート電極Gとを備え、ソース電極を一方の電極とし、またドレイン電極を他方の電極としてコンデンサを構成するとみて、該コンデンサの容量を低下させる容量低下構造を備えることを特徴とする。 (もっと読む)


【課題】 開口部が設けられ、当該開口部に二次元電子ガスで形成されるチャネルを備える縦型半導体装置の耐圧性能を向上させることを目的とする。
【解決手段】開口部28が設けられたGaN系積層体15を備える縦型の半導体装置であって、n型GaN系ドリフト層4/p型GaN系バリア層6/n型GaN系コンタクト層7、を備え、開口部を覆うように電子走行層22および電子供給層26を含む再成長層27と、ソース電極Sと、再成長層上に位置するゲート電極Gとを備え、ゲート電極Gは、p型GaNバリア層の厚み範囲に対応する部分を覆い、かつ開口部の底部から離れた位置の壁面内で終端している。 (もっと読む)


【課題】等価回路により電圧の累積効果を達成することが可能であって、ハイブレークダウン電圧の特性を有する高電子移動度トランジスターデバイスを提供する。
【解決手段】本発明は、製造プロセスで高電子移動度トランジスターを定義し、内部接続の方法で前記高電子移動度トランジスターを直列接続させた直列接続式の高電子移動度トランジスターデバイス及びその製造方法。 (もっと読む)


【課題】窒化ガリウム材料デバイスおよびその形成方法を提供する。
【解決手段】該デバイスは、電極規定層24を包含する。電極規定層は典型的にはその内部に形成されたビア26を有し、該ビア内に電極18が(少なくとも部分的に)形成される。したがって、ビアは、電極の寸法を(少なくとも部分的に)規定する。いくつかの場合において、電極規定層は、窒化ガリウム材料領域上に形成された不動態化層である。 (もっと読む)


【課題】チャネル層中のキャリア濃度を増すため、高いアルミニウム含有率を有した厚いAlGaN層は、成長中か冷却後にひびが入る傾向があり、これによってデバイスが破壊される。
【解決手段】基板上の第1のIII族窒化物層は第1の歪みを有する。GaN層のような第2のIII族窒化物層が、第1のIII族窒化物層上に設けられている。第2のIII族窒化物層は、第1のIII族窒化物層のバンドギャップよりも小さなバンドギャップを有し、かつ第1の歪みの大きさよりも大きい第2の歪みを有する。AlGaN層又はAlN層のような第3のIII族窒化物層がGaN層上に設けられている。第3のIII族窒化物層は、第2のIII族窒化物層のバンドギャップよりも大きなバンドギャップを有し、かつ第2の歪みと逆の歪みの型の第3の歪みを有する。ソースコンタクトとドレインコンタクトとゲートコンタクトを第3のIII族窒化物層上に設ける。 (もっと読む)


【課題】
本発明は、ソース電極およびドレイン電極の熱耐久性を向上させて、かつ製造過程においてオーミック性に与える不安定要因を取り除き信頼性および量産性の高いGaN系HEMTを提供する。
【解決手段】
化合物半導体装置は、基板と、前記基板上に形成された窒化ガリウム系半導体と、前記窒化ガリウム系半導体上に形成された窒化ガリウム系保護層と、前記窒化ガリウム系保護層上にタンタルとアルミニウムが任意の順に積層されてなるオーミック電極とを備え、前記オーミック電極が形成された箇所の前記窒化ガリウム系保護層の膜厚は、前記オーミック電極が形成されていない箇所の前記窒化ガリウム系保護層の膜厚よりも薄い。 (もっと読む)


【課題】半導体装置において、抵抗が増大して変換効率が低下してしまうのを防止する。
【解決手段】半導体装置を、基板2上に形成されたGaN系半導体積層構造3を有する第1トランジスタQ1と、GaN系半導体積層構造を有する第2トランジスタQ2とを備え、第1トランジスタが、複数の第1フィンガ8AXを有する第1ゲート電極8Aと、複数の第1ドレイン電極9Aと、複数の第1ソース電極10Aとを備え、第2トランジスタが、複数の第2フィンガ8BXを有する第2ゲート電極8Bと、複数の第2ドレイン電極9Bと、複数の第2ソース電極10Bとを備え、複数の第1ドレイン電極の上方又は下方に接続されたドレインパッド15と、複数の第2ソース電極の上方又は下方に接続されたソースパッド25と、複数の第1ソース電極及び複数の第2ドレイン電極に接続された共通パッド35とを備えるものとする。 (もっと読む)


【課題】低いオン抵抗を得ながら、優れた耐圧性能を持つ、縦型の半導体装置およびその製造方法を提供する。
【解決手段】開口部28はn型GaNドリフト層4にまで届いており、開口部の壁面を覆うように位置する再成長層27と、p型GaNバリア層6と、ゲート電極Gと、ソース電極Sとを備え、チャネルが電子走行層22内の電子供給層26との界面に生じる二次元電子ガスにより形成され、p型GaNバリア層6がGaN系積層体15の表層をなし、かつソース電極Sが、再成長層27およびp型GaNバリア層6に接して位置することを特徴とする。 (もっと読む)


【課題】 ピンチオフ特性を改善しまたはチャネル層の移動度を向上させ電気的特性の良好な半導体装置の製造方法を提供すること。
【解決手段】基板10上にGaN系半導体層20を形成する工程と、前記GaN系半導体層に開口部28を形成する工程と、前記開口部の側面に電子走行層22および電子供給層26を形成する工程と、前記電子供給層の前記開口部側の側面にゲート電極32を形成する工程と、前記GaN系半導体層上にソース電極30を形成する工程と、前記GaN系半導体層の前記ソース電極と相対する面に接続するドレイン電極34を形成する工程と、を具備する半導体装置の製造方法。 (もっと読む)


【課題】 p型GaNバリア層の電位を確実に固定することでピンチオフ特性、耐圧性能の向上を安定して得ることができる縦型の半導体装置を提供する。
【解決手段】 GaN系積層体15に開口部28が設けられており、開口部の壁面を覆うように位置するチャネルを含む再成長層27と、ソース電極Sとオーミック接触するn型ソース層8と、p型GaNバリア層6と、その間に位置するp型GaN補助層7とを含み、p型GaNバリア6の電位をソース電位に固定するために、p型GaN補助層7が、n型ソース層8とトンネル接合を形成することを特徴とする。 (もっと読む)


【課題】 縦型GaN系半導体装置において、p型GaNバリア層による耐圧性能の向上を得ながら、オン抵抗を低くできる半導体装置を提供する。
【解決手段】 開口部28壁面に位置するチャネルを含む再成長層27と、端面が被覆されるp型バリア層6と、p型バリア層上に接するソース層7と、再成長層の上に位置するゲート電極Gと、開口部の周囲に位置するソース電極Sとを備え、ソース層が超格子構造で構成され、該超格子構造が、p型バリア層よりも小さい格子定数を持つ第1の層(a層)と、該第1の層よりも格子定数が大きい第2の層(b層)との積層体である、ことを特徴とする。 (もっと読む)


【課題】より良質な窒化物半導体結晶層を製造する方法を提供する。
【解決手段】実施形態によれば、窒化物半導体結晶層の製造方法は、基体の上に設けられたシリコン結晶層の上に、第1の厚さを有する窒化物半導体結晶層を形成する工程を備える。前記シリコン結晶層は、前記窒化物半導体結晶層の形成の前には、前記第1の厚さよりも薄い第2の厚さを有している。前記窒化物半導体結晶層の形成は、前記シリコン結晶層の少なくとも一部を前記窒化物半導体結晶層に取り込ませ、前記シリコン結晶層の厚さを前記第2の厚さから減少せることを含む。 (もっと読む)


【課題】本発明は、金属半導体電界効果トランジスタ(MESFET)を提供する。
【解決手段】このMESFETは、ソース(13)とドレイン(17)とゲート(24)とを備えている。このゲート(24)を、ソース(13)とドレイン(17)の間及びn導電型チャネル層(18)上に設ける。ドレイン(17)に向かって延びている端部を備えるp導電型領域(14)をソースの下に設ける。このp導電型領域(14)をn導電型チャネル領域(18)から隔ててソース(13)に電気的に結合させる。 (もっと読む)


【課題】本発明は、オーバーシュートの発生を減少することができ、素子破壊を防止することができるとともに、スイッチング動作速度の高速化を実現することができるスイッチング素子を備えた半導体装置を提供する。
【解決手段】半導体装置1は、第1の半導体層31と、第2の半導体層32と、二次元キャリアガス層33と、第1の主電極41と、第2の主電極42と、第1のゲート電極51と、第2のゲート電極52とを備える。第1のゲート電極51は、第1の主電極41の一部と対向する第2の主電極42の一部との間に配設される。第2のゲート電極52は、第1の主電極41の他の一部と対向する第2の主電極42の他の一部との間において、第1のゲート電極51との間に分離領域6を介在し配設され、第1のゲート電極51に対して独立に制御される。 (もっと読む)


【課題】窒化物ベースの半導体チャネル層上に窒化物ベースの半導体バリア層を形成すること、および窒化物ベースの半導体バリア層のゲート領域上に保護層を形成することによって、トランジスタが製作される。
【解決手段】パターニングされたオーム性接触金属領域が、バリア層上に形成され、第1および第2のオーム性接触を形成するためにアニールされる。アニールは、保護層をゲート領域上に載せたままで実施される。バリア層のゲート領域上に、ゲート接点も形成される。ゲート領域内に保護層を有するトランジスタも形成され、バリア層の成長させたままのシート抵抗と実質的に同じシート抵抗をもつバリア層を有するトランジスタも同様である。 (もっと読む)


【課題】絶縁ゲート型P−HEMT構造において、良好なトランジスタ性能を実現する。
【解決手段】ベース基板、第1結晶層、第2結晶層および絶縁層をこの順に有し、第1結晶層と第2結晶層との間、または、ベース基板と第1結晶層との間に位置する第3結晶層をさらに有し、第2結晶層が、第1結晶層を構成する結晶に格子整合または擬格子整合し、かつ第1結晶層を構成する結晶よりも禁制帯幅が大きい結晶からなり、第3結晶層が、第1結晶層を構成する結晶に格子整合または擬格子整合し、かつ第1結晶層を構成する結晶よりも禁制帯幅が大きい結晶からなり、第3結晶層は、ドナーまたはアクセプタとなる第1原子を含み、第3結晶層がドナーとなる第1原子を含む場合、第2結晶層が、アクセプタとなる第2原子を含み、第3結晶層がアクセプタとなる第1原子を含む場合、第2結晶層が、ドナーとなる第2原子を含む半導体基板。 (もっと読む)


【課題】放熱スペースが短縮された、複数のユニットセルを有する高出力高周波半導体デバイスを提供する
【解決手段】ユニットセルは各々、制御電極24と、第1及び第2の被制御電極20,22とを有する。熱スペーサ(すなわち、電気的に不活性な領域)40が、これらのユニットセルのうち少なくとも1つを第1の活性部分及び第2の活性部分50に分割し、第2の活性部分は、この熱スペーサにより第1の部分から離隔される。ユニットセルの制御電極ならびに第1及び第2の被制御電極は、第1の熱スペーサを横切っている。 (もっと読む)


【課題】低オン抵抗の電界効果トランジスタを低コストで実現する。
【解決手段】電界効果トランジスタは、第一導電型の半導体基体であるN+型SiC基板2及びN-型ドレイン領域1と、N+型SiC基板2の第一主面側に、P型ウエル領域3とN+型ソース領域5とゲート電極7とを有する。N-型ドレイン領域1中に、N-型ドレイン領域1とはバンドギャップの異なるP+型ポリシリコンで形成され、第一主面から第二主面へ向かって伸びる柱状のヘテロ半導体領域4が、間隔を置いて並んで複数形成されている。ゲート電極7直下にチャネル領域が形成されないときに、N-型ドレイン領域1がヘテロ半導体領域4と接することによりN-型ドレイン領域1の全域が空乏化される。 (もっと読む)


161 - 180 / 747