説明

Fターム[5F110BB12]の内容

薄膜トランジスタ (412,022) | 用途、動作 (15,052) | 大電力用素子(例;IGBT、LDMOS) (451)

Fターム[5F110BB12]に分類される特許

61 - 80 / 451


【課題】低いオン抵抗を有するドリフト経路/ドリフト領域を有する、半導体素子、特にパワー半導体素子を提供する。
【解決手段】半導体基材100と、上記半導体基材100内の、半導体材料からなるドリフト領域2と、ドリフト領域2に対し、少なくとも部分的に隣り合って配置され、接続電極19を含む、半導体材料からなるドリフト制御領域3と、ドリフト領域2とドリフト制御領域3との間に配置された蓄積誘電体4と、第1素子領域8と、第1素子領域8との間にドリフト領域2が配置され、第1素子領域8から離れて配置された第2素子領域5と、ドリフト制御領域3の接続電極19および第1素子領域8の間に接続された容量性素子50とを含む。 (もっと読む)


【課題】バッファ層の結晶成長時に高抵抗化の不純物をドーピングすることなく上層の化合物半導体の結晶品質を保持するも、バッファ層を高抵抗化してオフリーク電流を確実に抑制し、信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2の裏面から、化合物半導体積層構造2の少なくともバッファ層2aに不純物、例えばFe,C,B,Ti,Crのうちから選ばれた少なくとも1種類を導入し、バッファ層2aの抵抗値を高くする。 (もっと読む)


【課題】GaN系の材料により形成されるHEMTの信頼性を高める。
【解決手段】基板10の上方に形成された窒化物半導体からなる半導体層21〜24と、半導体層21〜24の上方に、金を含む材料により形成された電極41と、電極41の上方に形成されたバリア膜61と、半導体層21〜24の上方に、シリコンの酸化膜、窒化膜、酸窒化物のいずれかを含む材料により形成された保護膜50と、を有する。 (もっと読む)


【課題】高耐圧特性と低オン抵抗特性とを両立した化合物半導体装置を実現する。
【解決手段】化合物半導体装置を、キャリア走行層2及びキャリア供給層3を含む窒化物半導体積層構造4と、窒化物半導体積層構造の上方に設けられたソース電極5及びドレイン電極6と、窒化物半導体積層構造の上方のソース電極とドレイン電極との間に設けられたゲート電極7と、ゲート電極とドレイン電極との間に少なくとも一部が設けられたフィールドプレート8と、窒化物半導体積層構造の上方に形成された複数の絶縁膜9、10とを備えるものとし、フィールドプレートとドレイン電極との間でゲート電極の近傍よりも複数の絶縁膜の界面の数を少なくする。 (もっと読む)


【課題】正確にメインセルに流れる電流を検出することができると共に、電流検出の直線性を向上させられ、高い電圧が用いられる場合でもその影響を受け難い半導体装置を提供する。
【解決手段】センスセルの両側にメインセルを配置し、センスセルのエミッタがメインセルのエミッタに挟まれた構造にする。これにより、センスセルのエミッタに流れる電流密度とセンスセルのエミッタに流れる電流密度とを近づけることができ、ミラー比がメインセルとセンスセルそれぞれのエミッタの長手方向における長さの比に近くなる。また、センスセルのエミッタに流れる電流密度とセンスセルのエミッタに流れる電流密度とを近づけられるため、スイッチング時や大電流が流れる時に流れる単位面積当たりの電流量がメインセル側と比較してセンスセル側において大きくなることを抑制できる。このため、電流の偏りを抑制することができ、破壊耐量を向上させることができる。 (もっと読む)


【課題】酸化物半導体膜を用いたトランジスタに安定した電気特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】n型酸化物半導体膜中にp型酸化物半導体材料を含ませることで酸化物半導体膜中に意図せずに生じるキャリアを低減することができる。これは、n型酸化物半導体膜中の意図せずに生じた電子が、p型酸化物半導体材料中に生じたホールと再結合することにより、消滅するためである。従って、酸化物半導体膜中に意図せずに生じるキャリアを低減することができる。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、トランジスタの特性を低下させることなく高い密度のドレイン電流が実現できるようにする。
【解決手段】主表面を(0001)面とした第1窒化物半導体からなるチャネル層101と、チャネル層101の上に形成された第1窒化物半導体より大きなバンドギャップエネルギーの窒化物半導体からなる第1障壁層102と、ゲート電極104が形成されたゲート形成領域121を挟んだソース形成領域122およびドレイン形成領域123の第1障壁層102の上に形成され、第2窒化物半導体より大きなバンドギャップエネルギーの第3窒化物半導体からなる第2障壁層105および第3障壁層106と、第2障壁層105および第3障壁層106の上に形成された第2窒化物半導体からなる第4障壁層107および第5障壁層108とを備える。 (もっと読む)


【課題】半導体層とゲート電極との間に絶縁膜が形成された半導体装置の信頼性を高める。
【解決手段】基板の上方に形成された半導体層と、前記半導体層上に形成された絶縁膜と、前記絶縁膜上に形成された電極と、を有し、前記絶縁膜は炭素を主成分とするアモルファス膜を含むものであることを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】工程増を最小限とした簡便な手法で、素子形成領域における化合物半導体と同時に、しかもその結晶性を損なうことなく確実な素子分離を実現し、信頼性の高い化合物半導体装置を実現する。
【解決手段】Si基板1上の素子分離領域に初期層3を選択的に形成し、初期層3上を含むSi基板1上の全面に化合物半導体の積層構造4を形成して、積層構造4は、素子分離領域では初期層3と共に素子分離構造4Bとなり、素子形成領域ではソース電極5、ドレイン電極6及びゲート電極7が形成される素子形成層4Aとなる。 (もっと読む)


【課題】正確にメインセルに流れる電流を検出することができると共に、高い電圧が用いられる場合でもその影響を受け難い半導体装置を提供する。
【解決手段】メインセルとセンスセルとをトレンチ分離構造1dによって絶縁分離する。これにより、メインセルのコレクタに対して100V以上の高電圧が印加されても、それに起因するノイズが電流検出用の出力端子に誘起されないようにできる。また、センスセルのエミッタ電位がセンス抵抗Rsに流れる電流によって上昇しても、メインセルのエミッタと電気的に完全に分離されているため、寄生トランジスタが動作することもない。勿論、抵抗層14から発生させられたノイズが電流検出用の出力端子に誘起されることも抑制できる。したがって、正確にメインセルに流れる電流を検出することができると共に、高い電圧が用いられる場合でもその影響を受け難い半導体装置とすることが可能となる。 (もっと読む)


【課題】安定した電気特性を有する薄膜トランジスタを有する、信頼性のよい半導体装置
を作製し、提供することを課題の一とする。
【解決手段】薄膜トランジスタの酸化物半導体層を覆う絶縁層にボロン元素またはアルミ
ニウム元素を含ませる。ボロン元素またはアルミニウム元素を含む絶縁層は、ボロン元素
またはアルミニウム元素を含むシリコンターゲットまたは酸化シリコンターゲットを用い
るスパッタ法により形成する。また、ボロン元素に代えてアンチモン元素(Sb)やリン
元素(P)を含む絶縁層で薄膜トランジスタの酸化物半導体層を覆う構成とする。 (もっと読む)


【課題】 出力ポートの絶縁破壊電圧より低い絶縁破壊電圧を有することが可能な静電放電保護素子を備える半導体装置を提供する。
【解決手段】 半導体装置は、第1LDMOS素子1を含む出力ポートと、出力ポートを静電放電から保護し、第2LDMOS素子4及びバイポーラトランジスタ3から構成される静電放電保護素子2と、を備える。第1LDMOS素子1および第2LDMOS素子4は、それぞれゲート、第1導電型のドレイン領域、第2導電型のボディ領域、及び第1導電型のドレイン領域と第2導電型のボディ領域との間に形成された素子分離領域を備える。このとき、第2LDMOS素子4の絶縁破壊電圧は、第1LDMOS素子1の絶縁破壊電圧より低い。これにより、第1LDMOS素子1の静電破壊を防止することができる。 (もっと読む)


【課題】 本発明は、より寄生容量の少ない素子の実現が可能な素子分離構造を有する半導体装置およびその製造方法を提供することにある。
【解決手段】 SOI基板上に形成される半導体装置は、素子分離領域に形成される素子分離溝(空洞)17と、半導体層11と支持基板13の間に介在する埋め込み絶縁層の一部に素子分離溝(空洞)17に接する空洞領域20を有する。
【効果】寄生容量を低減でき、また、素子の耐圧を高めることができる。 (もっと読む)


【課題】従来に比してオン電圧性能に優れた横型IGBT、および順方向電圧特性に優れた横型FWDを同一基板上に構成可能とする半導体装置を提供する。
【解決手段】半導体基板上において、横型IGBTと、横型FWDとが、絶縁体であるトレンチ絶縁仕切り部を挟むように横方向に隣接配置されて成る半導体装置であって、横型IGBTは、平面視した場合に、エミッタ領域と当該横型IGBTのドリフト領域との境界面の幅がコレクタ領域と当該横型IGBTのドリフト領域との境界面の幅より狭くなるよう形成されており、横型FWDは、平面視した場合に、カソード領域と当該横型FWDのドリフト領域との境界面の幅がアノード領域と当該横型FWDのドリフト領域との境界面の幅より狭くなるよう形成されていることを特徴とする、半導体装置。 (もっと読む)


【課題】高速スイッチング動作を行う場合でも、アバランシェブレークダウンを抑制でき、スイッチング損失低減や素子破壊を抑制することが可能な構成とする。
【解決手段】横型FWD7などの横型素子において、SRFP21の全抵抗Rの抵抗値を90kΩ〜90MΩ、好ましくは270kΩ〜27MΩ、より好ましくは900kΩ〜9MΩとすることにより、2ndピーク時のアノード電流IAなどの電流が大きくなることを抑制できる。これにより、高速スイッチング動作を行う場合でもアバランシェブレークダウンを抑制でき、横型FWD7のスイッチング損失低減や素子破壊を抑制することが可能となる。 (もっと読む)


【課題】Cdsubの低減化を通じて、出力容量Cossの低減化に寄与する半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1とこの半導体基板1上に埋め込み絶縁層を介して形成された第1導電型の半導体層とを有するSOI基板と、第1導電型の半導体層からなる活性領域3内に形成された素子領域と、素子領域の少なくとも1つに接続される外部取り出し用の電極(ドレインパッド9p)とを有する半導体装置において、外部取り出し用の電極9p下に位置する活性領域が、埋め込み絶縁層2に到達するように形成された絶縁分離領域11で囲まれており、絶縁分離領域11で分離された活性領域3と、外部取り出し用の電極9pとの間に絶縁体13が配されたことを特徴とする。 (もっと読む)


【課題】p型III族窒化物半導体8をドライエッチングして形成した平坦表面に電極を形成してもオーミック接触させることができない。
【解決手段】p型III族窒化物半導体8の電極形成範囲をドライエッチングして溝8dを形成し、その溝8dに金属20を充填して電極を形成する。p型III族窒化物半導体8のドライエッチング面は、エッチングによって生じた欠陥によってn型化しているために、平坦平面にドライエッチングしておいて電極を形成するとオーミック接触しない。溝8dを設けておくと、欠陥が少ない溝8dの側面においてp型III族窒化物半導体8と電極がオーミック接触し、半導体と電極の接触抵抗が低減する。 (もっと読む)


【課題】良好な線形性を有し、かつ電力損失の少ない双方向アナログスイッチの半導体装置を提供する。また、検出精度の高い超音波診断装置を提供する。
【解決手段】双方向にオンまたはオフ可能なスイッチ回路と、前記スイッチ回路の駆動回路を内蔵した双方向アナログスイッチの半導体装置であって、前記駆動回路は第一および第二の電源に接続され、前記第一の電源電圧は、前記スイッチ回路の入出力端子に印加される信号の最大電圧値以上であり、前記第二の電源電圧は、前記スイッチ回路の入出力端子に印加される信号の最小電圧値以下であり、さらに前記駆動回路は前記第一の電源と前記スイッチ回路との間に、直列に接続されたツェナダイオードとP型MOSFETを備えている。また、超音波診断装置であって、前記半導体装置を備える。 (もっと読む)


【課題】酸化物半導体を用いたパワーMISFETを提供する。
【解決手段】半導体層101を挟んでゲート電極102aとソース電極103a、ドレイン電極103bを形成し、半導体層のうちゲート電極102aとドレイン電極103bとの間にこれらが重ならない領域を設ける。この領域の長さを0.5μm乃至5μmとする。このようなパワーMISFETのドレイン電極とソース電極の間に100V以上の電源と負荷を直列に接続し、ゲート電極102aに制御用の信号を入力して使用する。 (もっと読む)


【課題】高耐圧、低逆方向飽和電流、高いオン電流などの電気特性を有する半導体装置を提供することである。なかでも、非線形素子より構成されるパワーダイオード及び整流器を提供することである。
【解決手段】第1の電極と、第1の電極を覆うゲート絶縁層と、ゲート絶縁層と接して且つ第1の電極と重畳する酸化物半導体層と、酸化物半導体層の端部を覆う一対の第2の電極と、一対の第2の電極及び酸化物半導体層を覆う絶縁層と、絶縁層に接して且つ一対の第2の電極の間に設けられる第3の電極と、を有し、一対の第2の電極は酸化物半導体層の端面に接する半導体装置である。 (もっと読む)


61 - 80 / 451