説明

Fターム[5F140BF25]の内容

Fターム[5F140BF25]の下位に属するFターム

Fターム[5F140BF25]に分類される特許

61 - 80 / 93


【課題】混晶層中のGe濃度およびC濃度の許容範囲内で、チャネル領域に十分に応力を印加することが可能な半導体装置の製造方法および半導体装置を提供する。
【解決手段】Si基板1上にダミーゲート電極3を形成する。次に、ダミーゲート電極3をマスクにしたリセスエッチングにより、リセス領域7を形成する。次いで、リセス領域7の表面に、SiGe層からなる混晶層8をエピタキシャル成長させる。続いて、ダミーゲート電極3を覆う状態で、混晶層8上に、層間絶縁膜12を形成し、ダミーゲート電極3の表面が露出するまで、層間絶縁膜12を除去する。ダミーゲート電極3を除去することで、層間絶縁膜12にSi基板1を露出する凹部13を形成する。その後、凹部13内にゲート絶縁膜14を介してゲート電極15を形成することを特徴とする半導体装置の製造方法である。 (もっと読む)


【課題】低いオン抵抗を実現可能な構造を有する、窒化物半導体を用いたエンハンスメント(ノーマリーオフ)型電界効果トランジスタ、とその製造方法の提供。
【解決手段】AlGaN電子供給層104上に、それと同じか、より大きなAl組成のAlGaNからなり、n型不純物が2×1019cm-3以上ドーピングされ、厚さが2〜10nm範囲のコンタクト層105を設け、ソース電極106とドレイン電極107の間の一部でコンタクト層105をエッチング除去して形成する第1のリセス110と、第1のリセス内の一部で電子供給層104を薄くして形成する第2のリセス112とを有し、第2のリセス内をゲート絶縁膜113とT型ゲート電極108で隙間なく埋め込み、T型ゲート電極108の傘の下の絶縁膜109による段差を利用して自己整合的にT型ゲート電極108に隣接してコンタクト層105上にオーミック補助電極114を形成する。 (もっと読む)


【課題】 ダマシンゲート技術等を用いてゲート電極が作製される半導体装置において、半導体装置の微細化等を可能にする。
【解決手段】 N型MISトランジスタ及びP型MISトランジスタそれぞれのゲート電極が半導体基板に形成された凹部内にゲート絶縁膜を介して形成されている半導体装置であって、N型MISトランジスタ及びP型MISトランジスタの一方のゲート電極は第1の金属含有膜F1及び第1の金属含有膜上の第2の金属含有膜F2の積層構造によって構成され、N型MISトランジスタ及びP型MISトランジスタの他方のゲート電極は第3の金属含有膜F3及び第3の金属含有膜上の第2の金属含有膜F2の積層構造によって構成されている。 (もっと読む)


【課題】ノーマリオフ動作が可能な絶縁ゲート電界効果トランジスタを提供する。
【解決手段】このヘテロ接合電界効果トランジスタ(MISHFET)は、AlGaNバリア層104の上にソースオーミック電極105とドレインオーミック電極106が形成されている。AlGaNバリア層104上にSiNxゲート絶縁膜108、p型多結晶SiC層109、オーミック電極であるPt/Auゲート電極110が順次形成されている。p型多結晶SiC層109は仕事関数が相対的に大きいので、ゼロバイアス状態でもMISHFETのチャネルが空乏化されて、ノーマリオフ動作が生じる。 (もっと読む)


【課題】特性の安定性が高い電界効果トランジスタ及びその製造方法を提供する。
【解決手段】基板2上にバッファ層3、アンドープGaN層4、AlGaN層5及びSiC層9をこの順に形成する。SiC層9のキャリア濃度は1×1017cm−3以上とし、抵抗率は10mΩcm(ミリオーム・センチメートル)以下とする。次に、SiC層9に対してSFガスにより反応性イオンエッチングを施し、SiC層9をパターニングする。そして、AlGaN層5上に保護膜10を形成した後、SiC層9上にソース電極6及びドレイン電極7を形成し、AlGaN層5上にゲート電極8を形成する。 (もっと読む)


【課題】金属ゲート電極のエッチング条件が、閾値電極を構成する材料が異なっても同一となる金属ゲート電極MOSFETを提供すること。
【解決手段】ゲート酸化膜に接して形成された第1の金属層と第1の金属層の上に形成された第1の低抵抗層とからなる第1のゲート電極を有するnチャネルMOSFETとゲート酸化膜に接して形成された第2の金属層と第2の金属層の上に形成された第2の低抵抗層とからなる第2のゲート電極を有するpチャネルMOSFETとを有する半導体集積回路において、第1の金属層と第2の金属層が異なった仕事関数を有する金属によって構成され、第1の低抵抗層と第2の低抵抗層とが同一の材料からなる多結晶で構成され、第1の金属層と第1の低抵抗層の間に第1の中間層を有し、且つ第2の金属層と第2の低抵抗層の間に第2の中間層を有し、第1の中間層および第2の中間層が組成、粒径、結晶構造、及び配向方向が同一の導電性多結晶膜からなる。 (もっと読む)


【課題】寄生抵抗の問題が生じることのないソース・ドレイン領域を有する。
【解決手段】半導体装置25は、半導体基板10上に一定間隔で列状に形成された多数のMOSFET用の複数の柱状ゲート電極16と、複数の柱状ゲート電極16のうちの隣接する2つの柱状ゲート電極間の一部分に形成されるMOSFETのチャネルに相当する半導体領域19と、を備える。この半導体装置の製造方法は、半導体基板を含む基層10〜12の表面に複数の穴14を列状に形成し、これら列状の複数の穴14に半導体を埋め込んで柱状ゲート電極16を列状に複数形成し、ゲート電極16の少なくとも一部を露出させて半導体基板10,11の表面に複数の柱状ゲート電極16を露出させ、隣接する2つの前記柱ゲート電極の離隔する距離の半分の長さよりも厚い絶縁物からなるゲート側壁膜17を成膜し、列状で複数の柱状ゲート電極16の上端を平坦面としてから金属膜により橋絡して第2ゲート電極23を形成し、ゲート電極を製造する。 (もっと読む)


基板(10)上に位置するスタック(30)。スタックは、誘電体層(16)と金属層(26)との間に層(24)を有する。その層は、ハロゲン及び金属を含む。一実施形態において、ハロゲンはフッ素である。一実施形態において、スタックは、トランジスタ用の制御電極スタックである。一例において、制御電極スタックは、MOSFET用のゲートスタックである。一例において、層はフッ化アルミニウムを含む。
(もっと読む)


トランジスタゲートは、表面上に配置された一対のスペーサを有する基板と、スペーサ間で基板上にコンフォーマルに堆積された高k誘電体と、高k誘電体上とスペーサの側壁の一部に沿ってコンフォーマルに堆積されたリセスされた仕事関数金属と、リセスされた仕事関数金属上にコンフォーマルに堆積された第2の仕事関数金属と、第2の仕事関数金属上に堆積された電極金属とを含む。トランジスタゲートは、高k誘電体を基板上のスペーサ間にあるトレンチ内にコンフォーマルに堆積し、高k誘電体上に仕事関数金属をコンフォーマルに堆積し、仕事関数金属上に犠牲マスクを堆積し、仕事関数金属の一部を露出すべく犠牲マスクの一部をエッチングし、リセスされた仕事関数金属を形成すべく仕事関数金属の露出された一部をエッチングすることにより形成されうる。第2の仕事関数金属及び電極金属が、リセスされた仕事関数金属上に堆積されうる。 (もっと読む)


【課題】改善された電気的特性を有するゲート構造物の形成方法及びそれを用いた半導体装置の製造方法を提供する。
【解決手段】基板上にゲート絶縁膜パターン、第1導電層パターン、及びダミーゲート層パターンを含む第1予備ゲート構造物を形成する。第1予備ゲート構造物に隣接する基板に不純物領域を形成した後、基板上に第1ゲート構造物を覆う絶縁層を形成する。ダミーゲート層パターンを除去してゲート絶縁膜パターン及び第1導電層パターンを含む第2予備ゲート構造物を形成した後、第1導電層パターン上に第2導電層パターンを形成する。ゲート電極を導電層パターンに変化されるか導電層パターンを形成するための犠牲層の役割を遂行するダミーゲート層パターンを適用することで、不純物領域の形成工程を含む半導体装置の製造のための高温工程下でもゲート電極が劣化されることを防止することができる。 (もっと読む)


【課題】二重仕事関数金属ゲートスタックを備えるCMOS半導体装置を提供する。
【解決手段】CMOS半導体装置は、PMOS及びNMOS装置の仕事関数を独立的に調節できる工程技術を利用して形成された二重仕事関数金属ゲート構造物を備えて、ゲート絶縁膜の信頼性に悪い影響を与えることをかなり低減または除去できる。 (もっと読む)


【課題】トレンチ型ゲートの溝内への導電性膜の埋め込み性が向上した、半導体装置の製造方法を提供する。
【解決手段】トランジスタが形成される複数の活性領域を囲む、基板面に対して垂直方向の断面が逆テーパ形状の素子分離部を基板に形成する工程と、複数の活性領域におけるトランジスタのソースおよびドレインの領域を覆う耐酸化性絶縁マスクを形成する工程と、耐酸化性絶縁マスクの上から基板に対して異方性エッチング行い、活性領域にトレンチ型ゲート用の溝を形成する工程と、上記溝の基板表面に形成された自然酸化膜を除去する工程と、水素雰囲気で熱処理を行うアニール工程と、耐酸化性絶縁マスクを除去する工程と、アンモニア過酸化水素を含む溶液で洗浄を行う洗浄工程と、熱酸化法により溝の基板表面にゲート酸化膜を形成する工程とを有するものである。 (もっと読む)


素子の耐圧性を改善するために、ゲートの周囲の電界を緩和する電界緩和機能を含むIII族窒化物電力半導体素子。 (もっと読む)


【課題】 微細化が進んだ場合でもゲート・リーク電流の低減を図ることのできる電界効果トランジスタを実現すること。
【解決手段】 半導体基板1と、磁化方向が第1方向に固定された第1強磁性体電極3と、磁化方向が前記第1方向と実質的に同じ方向に固定された第2強磁性体電極4と、第1強磁性体電極3と第2強磁性体電極4との間のチャネル2と、チャネル2上にゲート絶縁層5を介して設けられ磁化方向が前記第1方向と実質的に反対の方向に固定された強磁性体層6を備えたゲート電極とを具備することを特徴とする電界効果トランジスタ。ゲート電極の強磁性体層6の磁化方向が、第1強磁性体電極3及び第2強磁性体電極4のそれぞれの磁化方向と実質的に反対の方向に固定されているので、トンネル磁気抵抗効果によりゲート・リーク電流を低減化することができる。 (もっと読む)


ゲート酸化物層(12)とメタルゲート電極(60)との間に保護層(70)を形成することによって、リプレースメントゲートトランジスタに対してリーク電流を抑えた実効的なゲート酸化膜厚を得ることができ、これにより、応力を減らすことができる。実施形態においては、金属ゲート電極(60)から保護層を通じてゲート酸化物層(12)に向かうに従って濃度が低下する金属炭化物を含む非晶質炭素層(70)の保護層が形成される。方法の実施形態では、リムーバブルゲートを除去するステップ、ゲート酸化物層へ非晶質炭素層を蒸着するステップ、メタルゲート電極(60)を形成するステップ、を含み、さらにその後、メタルゲートからの金属を非晶質炭素層に拡散して金属炭化物を形成するように、高温に加熱するステップ、を含む。さらに、一実施形態では、高誘電定数を有するゲート酸化物層(82)と、金属ゲート電極(100)と基板(10)との界面において高濃度のシリコンと、を含むメタルゲートトランジスタが含まれる。
(もっと読む)


【課題】 nMISおよびpMIS形成領域の高誘電率ゲート絶縁膜上に設けられたデュアルメタルゲート電極の仕事関数の変化を抑制して、信頼性の高い半導体装置を製造する方法を提供する。
【解決手段】 単結晶シリコン基板100のnMISおよびpMIS形成領域に高誘電率ゲート絶縁膜102を形成し、ゲート絶縁膜102上にシリコンおよびゲルマニウムを含まない第一の金属膜103を形成し、pMIS形成領域のゲート絶縁膜上に第一の金属膜103を残して、nMIS形成領域の第一の金属膜103を除去する。次に、nMIS形成領域のゲート絶縁膜102および第一の金属膜103上にシリコンまたはゲルマニウムを含む第二の金属膜104を形成し、第一および第二の金属膜103、104を加工してゲート電極Gn、Gpをそれぞれ形成する。また、第一の金属膜103と第二の金属膜104に含まれる主の金属元素は周期律表における同族金属元素とする。 (もっと読む)


【課題】トランジスタ特性のばらつきが抑えられた半導体装置の製造方法を提供する。
【解決手段】P型MOSFETとN型MOSFETを有する半導体装置の製造方法であって、半導体基板上にゲート絶縁膜、ノンドープポリシリコン膜、金属シリサイド膜、金属ナイトライド膜、金属膜を形成する工程と、金属シリサイド膜の、P型MOSFETのゲート電極を構成する部分とN型MOSFETのゲート電極を構成する部分とが互いに分離するように、金属膜、金属ナイトライド膜および金属シリサイド膜を少なくとも加工してゲート形状にパターニングする工程と、P型およびN型のMOSFET形成領域内のノンドープポリシリコン膜にそれぞれP型およびN型不純物を導入する工程と、不純物を拡散させるための熱処理を行う工程と、不純物導入後のポリシリコン膜をゲート形状にパターニングする工程を有する半導体装置の製造方法。 (もっと読む)


【課題】 光感度を向上させ、波長400nm以下の紫外線を検知する電界効果型トランジスタを提供する。
【解決手段】 p型シリコン基板1、埋め込み酸化膜2、及び単結晶シリコン層3から構成されるSOI基板4において、単結晶シリコン層3にソース領域5およびドレイン領域6を形成する。ここで、ソース領域5とドレイン領域6との間の単結晶シリコン層3の表面側はチャネル層3aとして機能する。単結晶シリコン層3(チャネル層3a)、ソース領域5、及びドレイン領域6の上にゲート絶縁膜8を形成する。ゲート絶縁膜8上には、シリコンナノ粒子層9、シリコン酸化膜層10、およびAu電極層11から構成されるゲート電極12を設け、さらにゲート電極12の周囲には絶縁膜からなる側壁膜(サイドウォール)13を設ける。 (もっと読む)


【課題】 電極サイズが大きい場合でも、アルミニウムを含むメタル配線に変質、変形等の悪影響を与えることなく、界面準位を十分に低減できるようにした半導体導体装置の製造方法を提供する。
【解決手段】 ゲート電極15両側のシリコン層5にS/D19とを形成する工程と、S/D19とが形成されたシリコン層5上に層間絶縁膜21を形成する工程と、層間絶縁膜21を選択的にエッチングしてコンタクトホールh1〜h3を形成する工程と、コンタクトホールh1〜h3の底面にTiN/Ti膜23を形成する工程と、TiN/Ti膜23が形成されたSOI基板10に水素シンターを施す工程と、水素シンターの後でTiN/Ti膜23上にアルミニウムを含むメタル配線31を形成する工程と、を含む。長チャネルトランジスタについては、メタル配線31に悪影響を与えることなく、シリコン層5とゲート絶縁膜13との間の界面準位を低減できる。 (もっと読む)


【課題】デュアルゲート構造及びその製造方法、デュアルゲート構造を備える半導体素子及びその製造方法を提供する。
【解決手段】半導体素子は、基板上に形成された少なくとも2つのスタックゲート構造を備える。2つのスタックゲート構造は、各々半導体層及び半導体層上に形成された金属層を備える。基板上に形成された2つのスタックゲート構造は、相異なる中間層、すなわち、2つのスタックゲートのうち1つは、オーミック層を備え、2つのスタックゲートのうち他の1つは、オーミック層を備えないことにその特徴がある。 (もっと読む)


61 - 80 / 93