説明

Fターム[5F140BG32]の内容

Fターム[5F140BG32]に分類される特許

101 - 120 / 445


【課題】王水等の薬液によるシリサイド膜表面における腐食発生を抑制し、良好なPt含有シリサイド膜を形成する半導体装置の製造方法と、それを実現する半導体装置の製造装置とを提供する。
【解決手段】半導体装置の製造方法は、半導体層を有する基板上または基板上に形成された導電膜上に、貴金属を含む合金膜を形成する工程(a)と、基板に対して熱処理を行って貴金属とシリコンとを反応させ、基板上または導電膜上に貴金属を含むシリサイド膜を形成する工程(b)と、工程(b)の後、第1の薬液を用いて未反応記合金膜を除去する工程(c)と、基板を酸化性雰囲気に曝すことによって、貴金属の残渣の下に位置する部分を含むシリサイド膜の上面上にシリコン酸化膜を形成する工程(d)と、第2の薬液を用いて貴金属の残渣を溶解する工程(e)とを備えている。 (もっと読む)


【課題】ゲートのデプリーションの影響が最小にされた、半導体デバイスのゲート電極の製造方法が提案される。
【解決方法】この方法は、2つの堆積プロセスで構成され、第1工程では、薄い層を堆積し、イオン注入により激しくドーピングする。第2堆積は、ドーピングに関連するイオン注入により、ゲート電極を完成させる。この2つの堆積プロセスにより、ゲート電極/ゲート誘電体界面におけるドーピングを最大にする一方で、ホウ素がゲート誘電体に浸透するリスクを最小にすることができる。別の構成では、両ゲート電極層のパターン形成を含み、ドレイン延長部及びソース/ドレインの注入をゲートのドーピングの注入として使用する利点と、2つのパターンをずらし、非対称デバイスを生成するという選択肢がある。ドーパントを、誘電体層の中に含まれる注入層から半導体表面に拡散させることにより、浅い接合部を半導体基板に形成する方法が提供される。 (もっと読む)


【課題】マルチ酸化プロセスにおいて、p型MOSFETの閾値電圧を、可及的に高精度に制御可能な半導体装置の製造方法を提供する。
【解決手段】LV領域、MV領域及びHV領域にSiGe膜5をそれぞれ形成し、
LV領域、MV領域及びHV領域におけるSiGe膜5の上に第1のゲート絶縁膜6を形成し、
MV領域における第1のゲート絶縁膜6を除去し、
LV領域とHV領域における第1のゲート絶縁膜6、及びMV領域におけるSiGe膜5の上に第2のゲート絶縁膜8を形成し、
LV領域における第1のゲート絶縁膜6及び第2のゲート絶縁膜8を除去し、
LV領域におけるSiGe膜5の上にシリコン膜10を形成し、
LV領域におけるシリコン膜10、及びMV領域とHV領域とにおける第2のゲート絶縁膜8の上に、High−k膜からなる第3のゲート絶縁膜12及びメタル層13を順次形成する。 (もっと読む)


【課題】ゲート絶縁膜形成工程のような大きな熱負荷を避けて、チャネルの最上面の不純物濃度を薄くした、深さ方向のドーピング・プロファイルを実現し、オン電流が向上する半導体装置の製造方法を提供することである。
【解決手段】 ゲート電極形成後にゲート電極をマスクにして角度10度以下でチャネル不純物をイオン注入し、この後、チャネル不純物の活性化を、基板表面から所定の深さのチャネル不純物濃度がゲート長方向に一定になるように、RTAを用いたアニールで行う、さらに、その後のエクステンション/ハロー注入、深いS/D注入の後の活性化を、拡散レスアニールで行う。 (もっと読む)


【課題】製造効率を向上すると共に、内部回路の保護を的確に行う。
【解決手段】サージ電圧が入力パッドPADに入力された際に、ゲート電極501が、Pウェル201にて絶縁層301を介して対面する部分201Bに、キャリアを誘起させるように構成する。これにより、ESD保護素子101において、寄生バイポーラトランジスタの直流電流増幅率hFEを上昇させ、スナップバック開始電圧Vt1を低下させる。 (もっと読む)


【課題】金属シリサイド層と窒化シリコン膜の界面に自然酸化膜が残存していると、窒化シリコン膜の成膜後の種々の加熱工程(例えば種々の絶縁膜や導体膜の成膜工程のように半導体基板の加熱を伴う工程)において、金属シリサイド層表面にある自然酸化膜の酸素に起因して、金属シリサイド層が部分的に異常成長してしまう。
【解決手段】本願発明においては、集積回路を構成する電界効果トランジスタのソース・ドレイン上のニッケル・シリサイド等の金属シリサイド膜の上面に対して、不活性ガスを主要な成分とするガス雰囲気中において、実質的にノン・バイアス(低バイアスを含む)のプラズマ処理を施した後、コンタクト・プロセスのエッチング・ストップ膜となる窒化シリコン膜を成膜することにより、金属シリサイド膜の不所望な削れを生じることなく、金属シリサイド膜の上面の自然酸化膜を除去することができる。
を図ることができる。 (もっと読む)


【課題】ゲート電極の形成後に熱処理が施される場合でも、金属から成るゲート電極の仕事関数を比較的容易に制御することができる半導体装置の製造方法を提供する。
【解決手段】nFET領域RnおよびpFET領域Rpの半導体基板1上にゲート絶縁膜2およびゲート電極用金属膜3を順次に形成した後、pFET領域Rpに形成されたゲート電極用金属膜3に不純物を注入する。これによって、pFET領域Rpに形成されたゲート電極用金属膜3の組成を変化させることができるので、このゲート電極用金属膜3で形成されるpFET領域Rpのゲート電極の仕事関数を変化させることができる。したがって、nFET領域RnとpFET領域Rpとに、異なる仕事関数を有するゲート電極を容易に形成することができる。 (もっと読む)


【解決手段】
洗練されたトランジスタ要素を形成するための製造プロセスの間、それぞれの金属シリサイド領域を形成するのに先立つ共通のエッチングシーケンスにおいて、ゲート高さが減少させられてよく、そして凹型のドレイン及びソース構造もまた得られてよい。対応する側壁スペーサ構造はエッチングシーケンスの間に維持され得るので、ゲート電極におけるシリサイド化プロセスの可制御性及び均一性を高めることができ、それにより、低減された程度のスレッショルドばらつきを得ることができる。更に、凹型のドレイン及びソース構造が、全体的な直列抵抗の低減及び応力転移効率の増大をもたらすことができる。 (もっと読む)


【課題】インパクトイオン化領域にてキャリアがゲート絶縁膜に入り込むことがない半導体装置とその製造方法を提供する。
【解決手段】トランジスタ部分22と、ダイオード部分23を具備し、トランジスタ部分22は、第1導電型又は真性の半導体領域であるチャネル形成領域6と、チャネル形成領域6に接するゲート絶縁膜7と、チャネルを形成させるゲート電極8と、第2導電型あり、チャネル形成領域6に接し、ドレイン電圧が供給されるドレイン領域4と、第2導電型であり、チャネル形成領域6を介してドレイン領域4に対向し、チャネル形成領域6にチャネルが形成されたときにチャネル形成領域6を介してドレイン電圧が供給されるソース領域5とを含み、ダイオード部分23は、ソース領域5に電気的に接続されており、ソース領域5にドレイン電圧が供給されたときに、ダイオード部分23はインパクトイオン化現象が発生する領域を含む。 (もっと読む)


【解決手段】
開示される主題は、半導体トランジスタデバイス及び、従来のシリサイドコンタクトと比較して増大された実効サイズを有するシリサイドコンタクトを形成するために利用することができる関連する製造技術に関する。ここに開示されるプロセスに従って製造される半導体デバイス(200)は、半導体材質(102)の層と、半導体材質(102)の層を覆うゲート構造(112,128)とを含む。チャネル領域(218)が半導体材質(102)の層内に形成され、チャネル領域(218)はゲート構造(112,128)の下層となる。半導体デバイス(200)はまた、半導体材質(102)の層内のソース及びドレイン領域(216)を含み、チャネル領域(218)はソース及びドレイン領域(216)の間に配置される。また、半導体デバイス(200)はソース及びドレイン領域(216)を覆うファセット形状シリサイドコンタクト区域(210,308,406)を含む。 (もっと読む)


【課題】サリサイドプロセスで金属シリサイド層を形成した半導体装置の信頼性を向上させる。
【解決手段】ゲート電極GE1,GE2、ソース・ドレイン用のn型半導体領域7b及びp型半導体領域8bを形成してから、半導体基板1上にNi1−xPt合金膜を形成し、第1の熱処理を行って合金膜とゲート電極GE1,GE2、n型半導体領域7b及びp型半導体領域8bとを反応させることで、(Ni1−yPtSi相の金属シリサイド層41aを形成する。この際、Niの拡散係数よりもPtの拡散係数の方が大きくなる熱処理温度で第1の熱処理を行ない、かつ、金属シリサイド層41a上に合金膜の未反応部分が残存するように、第1の熱処理を行なう。これにより、y>xとなる。その後、未反応の合金膜を除去してから、第2の熱処理を行って金属シリサイド層41aを更に反応させることで、Ni1−yPtSi相の金属シリサイド層41bを形成する。 (もっと読む)


【課題】保護素子のターンオン電圧を決める制約を少なくする。
【解決手段】半導体基板1、Pウェル2、ゲート電極4、ソース領域5、ドレイン領域6および抵抗性降伏領域8を有する。抵抗性降伏領域8はドレイン領域6に接し、ゲート電極4直下のウェル部分と所定の距離だけ離れたN型半導体領域からなる。ドレイン領域6または抵抗性降伏領域8に接合降伏が発生するドレインバイアスの印加時に抵抗性降伏領域8に電気的中性領域(8i)が残るように、抵抗性降伏領域8の冶金学的接合形状と濃度プロファイルが決められている。 (もっと読む)


【課題】洗浄工程で活性領域が倒れたり、変形したりするのを防いだ電界効果トランジスタを提供する。
【解決手段】半導体基板の表面に、FETの動作時にチャネルが発生する部位を含む4つの柱状活性領域を有し、各々の柱状活性領域は梁フィールド酸化膜8により分離され、各々の柱状活性領域の側面に接するようにゲート絶縁膜10を介してゲート電極11aおよび11bが設けられ、柱状活性領域の上面にはドレイン電極に相当する上部拡散層14dと、シリコン基板1の表面にソース電極に相当する下部拡散層9a、9b、9cおよび9dとが設けられた構成である。 (もっと読む)


【課題】ゲート間のピッチが狭い場合における短チャネル効果の劣化を抑制する。
【解決手段】基板上に、第1ゲートと、第1ゲートに隣接する第2ゲートを形成する工程、第1ゲートの側壁に第1サイドウォールを、第2ゲートの側壁に第2サイドウォールを形成する工程、第1ゲート、第1サイドウォール、第2ゲート、第2サイドウォールをマスクとして、基板に第1不純物の注入を行う工程、全面に絶縁膜を堆積した後、絶縁膜をエッチングして、第1サイドウォールの側面に第3サイドウォールを、第2サイドウォールの側面に第4サイドウォールを、第1ゲートと第2ゲートの間において第3サイドウォールと第4サイドウォールとが接触するように形成する工程、第1ゲート、第1及び第3サイドウォール、第2ゲート、第2及び第4サイドウォールをマスクとして、基板に第2不純物の注入を行う工程、第3及び第4サイドウォールを除去する工程、を有する。 (もっと読む)


【課題】NMOSFET及びPMOSFET等のNMOS及びPMOSを有する半導体装置において、ゲート電極の実効仕事関数を、Siバンドギャップのmid-gap付近の値に安定的に設定することが可能な半導体装置及びその製造方法を提供する。
【解決手段】素子分離膜によって分離されてなる、p型拡散層及びn型拡散層を有する半導体基板と、前記半導体基板の、前記p型拡散層及びn型拡散層それぞれの上に形成されてなるゲート絶縁膜と、前記ゲート絶縁膜上に形成された金属膜を含むゲート電極と、前記ゲート絶縁膜と前記金属膜との界面に形成されたGe介在物と、前記金属膜上に形成されたシリコン含有層と、を具えるようにして半導体装置を構成する。 (もっと読む)


【解決手段】
シリコン含有基板を備えた半導体デバイスを形成するための方法が提供される。1つの例示的な方法は、シリコン含有基板を覆う多結晶シリコン層を堆積させることと、多結晶シリコン層をアモルファス化することと、アモルファス化された多結晶シリコン層をエッチングしてゲート電極を形成することと、ゲート電極を覆う応力誘起層を堆積させることと、シリコン含有基板を焼鈍してゲート電極を再結晶化することと、応力誘起層を除去することと、ゲート電極をエッチングマスクとして用いて基板内へ凹部をエッチングすることと、凹部内に不純物ドープのシリコン含有領域をエピタキシャル成長させることとを備えている。 (もっと読む)


【課題】高駆動能力をもった厚いゲート膜を有する高耐圧MOSトランジスタを有する半導体装置を提供する。
【解決手段】高耐圧を有するLOCOSオフセットMOS型トランジスタにおいて、第2導電型高濃度ソース領域4と第2導電型高濃度ドレイン領域5を形成する際に、ポリシリコンゲート電極をマスクにしてゲート酸化膜を除去しても、チャネル形成領域7上のゲート酸化膜6はエッチングされないように、ソース側にもソースフィールド酸化膜14を設け、第2導電型高濃度ソースフィールド領域13の距離を最適化したことで、高駆動能力をもった厚いゲート膜を有する高耐圧MOSトランジスタを得ることが出来る。 (もっと読む)


【課題】オフセットスペーサが除去されることを防止する。
【解決手段】第1導電型の半導体領域10x上に形成されたゲート絶縁膜13Aと、ゲート絶縁膜上に形成されたゲート電極15Aと、ゲート電極の側面上に形成されたオフセットスペーサ17Aと、ゲート電極の側面上にオフセットスペーサを介して形成された断面形状がL字状の内側サイドウォール19と、ゲート電極15A、オフセットスペーサ17A、内側サイドウォール19、及び半導体領域10xにおける内側サイドウォール19の外側方に位置する領域を覆うように形成された絶縁膜24とを備え、オフセットスペーサ17Aは、ゲート電極の側面上に形成された内側オフセットスペーサ16と、ゲート電極の側面上に内側オフセットスペーサ16を覆うように形成された外側オフセットスペーサ17とを有し、外側オフセットスペーサは、内側オフセットスペーサの上端及び外側面に接して形成されている。 (もっと読む)


【課題】高誘電率膜をゲート絶縁膜として用いたCISトランジスタの信頼性を向上する。
【解決手段】基板1の主面には、素子分離領域2によって互いに絶縁分離されたpMISトランジスタの活性領域およびnMISトランジスタの活性領域が設けられている。素子分離領域2に係るようにnMISトランジスタの活性領域上にnMISトランジスタのゲート絶縁膜を構成するハフニウム系酸化膜5が設けられており、そのハフニウム系酸化膜5と素子分離領域2上で接触し、pMISトランジスタの活性領域上にハフニウム系酸化膜5と異なる材料から構成されるpMISトランジスタのゲート絶縁膜を構成するハフニウム系酸化膜9が設けられている。 (もっと読む)


【課題】 LCDドライバICには通常の低耐圧MISFETとともに、高耐圧MISFETが搭載される。通常のMISFETよりゲート酸化膜が厚いため、必然的に電極高さが高くなる。そのためゲート・コンタクトの深さが浅く、通常部とのプロセス上の両立が必要となる。
【解決手段】本願発明は高耐圧MISFETのたとえばチャネル幅方向において、厚膜ゲート酸化領域の境界をゲート電極端より内側に納めたものである。これにより低くなったゲート電極部にゲート・コンタクトを配置し、厚膜境界がゲート電極端より内側でかつ、ゲート・コンタクトとチャネル端との間にくることとなる。 (もっと読む)


101 - 120 / 445