説明

Fターム[5F152CD14]の内容

再結晶化技術 (53,633) | 被結晶化層の下方の層 (4,095) | 材料(結晶化直前の状態) (3,330) | 絶縁体 (2,749) | SiN (830)

Fターム[5F152CD14]に分類される特許

81 - 100 / 830


【課題】多結晶シリコン層、その製造方法、多結晶シリコン層を利用した薄膜トランジスタ及び薄膜トランジスタを備えた有機発光表示装置を提供する。
【解決手段】基板10上のバッファ層11上に非晶質シリコン層12を形成する工程と、非晶質シリコン層12上に触媒金属層を1011ないし1015原子/cmの密度を有するように形成する工程と、触媒金属層の触媒金属が非晶質シリコン層12に拡散して非晶質シリコン層12とバッファ層11との界面でピラミッド形態の結晶化シードを形成し、結晶化シードによってシリコン結晶が成長して多結晶シリコン層22を形成するように、非晶質シリコン層12を熱処理する工程と、を含むシリコン層の結晶化方法である。 (もっと読む)


【課題】量産性に優れた薄膜トランジスタを提供する。また半導体装置の作製において有
用な半導体薄膜を提供する。
【解決手段】プラズマCVD法により作製された希ガス元素を1×1020/cm〜1
×1021/cmで含む半導体膜を形成し、前記半導体膜の一部を除去して、活性層を
形成し、トップゲート型薄膜トランジスタまたはボトムゲート型薄膜トランジスタを作製
する。また、プラズマCVD法により作製された希ガス元素を1×1020/cm〜1
×1021/cmで含む半導体膜を剥離層として用いた半導体装置を作製する。また、
プラズマCVD法により作製された希ガス元素を1×1020/cm〜1×1021
cmで含む半導体膜をゲッタリングサイトとして用いた半導体装置を作製する。 (もっと読む)


【課題】被照射物内に厚さのばらつきが存在する場合であっても、被照射物に対してレーザ光の照射を均一に行うレーザ光の照射方法を提供する。
【解決手段】厚さのばらつきが存在する被照射物にレーザ光を照射する際に、オートフォーカス機構を用いることによって、被照射物の表面にレーザ光を集光するレンズと被照射物間との距離を一定に保ちながらレーザ光の照射を行う。特に、レーザ光に対して被照射物を被照射物の表面に形成されたビームスポットの第1の方向および第2の方向に相対的に移動させて、被照射物にレーザ光の照射を行う場合に、第1の方向および第2の方向のいずれかの方向に移動させる前にオートフォーカス機構によってレンズと被照射物間との距離を制御する。 (もっと読む)


【課題】結晶性の高い酸化物半導体膜の作製方法を提供することを課題の一とする。また、高い電界効果移動度を有するトランジスタの作製方法を提供することを課題の一とする。
【解決手段】基板上に酸素を意図的に含ませない雰囲気で酸化物半導体膜を形成し、酸素を含む雰囲気で熱処理をして、酸化物半導体膜を結晶化させる酸化物半導体膜の作製方法である。また、基板上に、ゲート電極を形成し、ゲート電極上にゲート絶縁膜を形成し、ゲート絶縁膜上に酸素を意図的に含ませない雰囲気で酸化物半導体膜を形成し、酸素を含む雰囲気での第1の熱処理をして、酸化物半導体を結晶化させ、結晶化した酸化物半導体膜上にソース電極およびドレイン電極を形成し、結晶化した酸化物半導体膜、ソース電極およびドレイン電極上に酸素原子を含む絶縁膜を形成し、結晶化した酸化物半導体膜を第2の熱処理により酸化させるトランジスタの作製方法である。 (もっと読む)


【課題】 非晶質シリコンTFTの特性を大幅に向上させつつ、その製造プロセスにおける膜飛びを抑制する。
【解決手段】まず、基板10上にゲート電極11を形成する。次に、基板10上に、ゲート電極11を平面視で覆うゲート絶縁膜12を形成し、その上に、チャネル領域13cとソース領域13sとドレイン領域13dとを有する非晶質の半導体膜13を形成し、その上に、チャネル領域13cを平面視で覆うチャネル保護層14を形成する。次に、半導体膜13とチャネル保護層14とにレーザーを照射することにより、チャネル領域13cを微結晶化する。次に、半導体膜13上に、チャネル保護層14を平面視で覆い、ソース領域13sとドレイン領域13dとに平面視で重なる導電膜を形成する。次に、導電膜をエッチングしてソース電極16sとドレイン電極16dとを形成する。 (もっと読む)


【課題】均一・良好な電気特性を得ると共に、簡素な構成で工程の削減が可能な薄膜トランジスタおよびその製造方法、並びに表示装置を提供する。
【解決手段】酸化物半導体膜40を、非晶質膜41および結晶化膜42の積層構造とし、非晶質膜41により、均一性の高い電気特性を得る。ソース電極50Sおよびドレイン電極50Dを結晶化膜42に接して設けることにより、製造工程においてソース電極50Sおよびドレイン電極50Dをエッチングする際に酸化物半導体膜40がエッチングされてしまうことを抑える。チャネルエッチ型を適用した場合にソース電極50Sおよびドレイン電極50Dと酸化物半導体膜40とのウェットエッチング選択比を高めることが可能となり、チャネルエッチ型の簡素な構成の適用による製造工程の削減が可能となる。 (もっと読む)


【課題】チャネル保護層に対するソース、ドレイン電極及び不純物層のアライメントずれが生じた場合であっても、オン電流特性のばらつきを抑制することができる半導体装置及びその製造方法を提供する。また、製品の歩留まりを向上させることができるとともに、良好な画質を有する発光装置、並びに、該発光装置を実装した電子機器を提供する。
【解決手段】薄膜トランジスタTFTの半導体層14上に設けられるチャネル保護層15と、ソース、ドレイン電極18及び不純物半導体層17との間に、カーボン絶縁膜16が設けられている。半導体層14は、例えば非晶質シリコンをレーザーアニール処理することにより結晶化された微結晶シリコンにより形成されている。カーボン絶縁膜16は、このレーザーアニール処理において適用される光熱変換層であり、当該光熱変換層の一部を残したものである。 (もっと読む)


【課題】導電体領域から絶縁体領域までの範囲内で所望の電気抵抗値有し、且つ、電気的ストレスに対して安定性の良好なIGZO系アモルファス酸化物薄膜を製造する
【解決手段】IGZO系アモルファス酸化物薄膜を基板上にスパッタ成膜し、その後アニール処理してIGZO系アモルファス酸化物薄膜を製造する方法であって、成膜装置内の水分量とアニール処理の温度の組み合わせを変化させて、導電体領域から絶縁体領域の範囲内の任意の電気抵抗値を有するアモルファス酸化物薄膜を製造する。 (もっと読む)


【課題】短時間且つ低温で高品質な多結晶シリコンを形成する方法を提供する。
【解決手段】微結晶11aを含むアモルファス半導体膜11にマイクロ波を用いたアニールを行うことで、微結晶11aを核として微結晶11aを含むアモルファス半導体膜11を結晶化する。 (もっと読む)


【課題】薄膜トランジスタ及びその製造方法を提供すること。
【解決手段】薄膜トランジスタは基板上に形成されたゲート電極、ゲート電極と重なり、第12族元素と第16族元素(但し、酸素元素は除く)または第13族元素と第15族元素を含む非結晶質の多元系化合物(multi−elements compound)を含んで、電子移動度が約0.8cm/Vs以上の半導体パターン、半導体パターンの第1端部と重なるソース電極、及び半導体パターンの第2端部と重なってソース電極と離隔されたドレイン電極を含む。非結晶質の多元系化合物を半導体パターンに適用することによって薄膜トランジスタの駆動特性を向上させることができる。 (もっと読む)


【課題】本発明は、多結晶シリコン層の製造方法を開示する。
【解決手段】本発明の一実施形態に係る多結晶シリコン層(22)の製造方法は、非晶質シリコン層(20)と金属混入層(30)とをコンタクトした後、非晶質シリコン層(20)を結晶化熱処理して多結晶シリコン層(22)を製造することを特徴とする。本発明によれば、金属触媒の量を少なく導入しながらも、結晶化温度を低くすることができる多結晶シリコン層の製造方法を提供することができる。 (もっと読む)


【課題】レーザを照射して薄膜トランジスタに用いる微結晶薄膜を形成する工程において、結晶性の周期的な劣化を回避し、安定して均一性能の微結晶膜を形成することができる平面表示装置の製造方法を提供する。
【解決手段】連続発振レーザ光を非晶質シリコン膜表面に照射し、一定の速度でレーザを基板に対して相対的に走査しながら結晶化する際に、非晶質シリコン膜の一領域あたりへのレーザ照射時間が0.1ms以上となるように走査し、結晶化を行う。 (もっと読む)


【課題】特性の優れた半導体膜を簡便に得ることができる微結晶半導体膜の結晶化方法と、これを応用した薄膜トランジスタ、半導体装置、及び薄膜トランジスタの製造方法を提供すること。
【解決手段】本発明にかかる薄膜トランジスタは、基板1上に形成されたゲート電極2と、ゲート電極2を覆うゲート絶縁膜3と、ゲート絶縁膜3を介してゲート電極2の対面に形成され、ソース領域となる第1非晶質領域41、ドレイン領域となる第2非晶質領域42、及び第1非晶質領域41と第2非晶質領域42との間に配置されたチャネル領域となる結晶性領域43を有する半導体膜4と、半導体膜4上に結晶性領域43と直接接触することなく形成され、ソース領域及びドレイン領域とそれぞれ電気的に接続されたソース電極81及びドレイン電極82と、を備えるものである。 (もっと読む)


【課題】基板の大面積化を可能とするとともに、結晶性の優れた酸化物半導体層を形成し、所望の高い電界効果移動度を有するトランジスタを製造可能とし、大型の表示装置や高性能の半導体装置等の実用化を図る。
【解決手段】基板上に第1の多元系酸化物半導体層を形成し、第1の多元系酸化物半導体層上に一元系酸化物半導体層を形成し、500℃以上1000℃以下、好ましくは550℃以上750℃以下の加熱処理を行って表面から内部に向かって結晶成長させ、第1の単結晶領域を有する多元系酸化物半導体層、及び単結晶領域を有する一元系酸化物半導体層を形成し、単結晶領域を有する一元系酸化物半導体層上に第2の単結晶領域を有する多元系酸化物半導体層を積層する。 (もっと読む)


【課題】基板の大面積化を可能とするとともに、結晶性の優れた酸化物半導体層を形成し、所望の高い電界効果移動度を有するトランジスタを製造可能とし、大型の表示装置や高性能の半導体装置等の実用化を図る。
【解決手段】基板上に一元系酸化物半導体層を形成し、500℃以上1000℃以下、好ましくは550℃以上750℃以下の加熱処理を行って表面から内部に向かって結晶成長させ、単結晶領域を有する一元系酸化物半導体層を形成し、単結晶領域を有する一元系酸化物半導体層上に単結晶領域を有する多元系酸化物半導体層を積層する。 (もっと読む)


【課題】結晶性の優れた酸化物半導体層を形成して電気特性の優れたトランジスタを製造可能とし、大型の表示装置や高性能の半導体装置等の実用化を図ることを目的の一つとする。
【解決手段】第1の加熱処理で第1の酸化物半導体層を結晶化し、その上部に第2の酸化物半導体層を形成し、温度と雰囲気の異なる条件で段階的に行われる第2の加熱処理によって表面と略垂直な方向にc軸が配向する結晶領域を有する酸化物半導体層の形成と酸素欠損の補填を効率良く行い、酸化物半導体層上に接する酸化物絶縁層を形成し、第3の加熱処理を行うことにより、酸化物半導体層に再度酸素を供給し、酸化物絶縁層上に、水素を含む窒化物絶縁層を形成し、第4の加熱処理を行うことにより、少なくとも酸化物半導体層と酸化物絶縁層の界面に水素を供給する。 (もっと読む)


【課題】本発明の一態様は、酸化物半導体を用いたデバイスにおいて高い移動度を達成し、信頼性の高い表示装置を提供する。
【解決手段】表面と略垂直な方向にc軸が配向する結晶領域を有する酸化物半導体層を形成し、酸化物半導体層上に接する酸化物絶縁層を形成し、第3の加熱処理を行うことにより、酸化物半導体層に酸素を供給し、酸化物絶縁層上に、水素を含む窒化物絶縁層を形成し、第4の加熱処理を行うことにより、少なくとも酸化物半導体層と酸化物絶縁層の界面に水素を供給する。 (もっと読む)


【課題】半導体膜から粒径の大きな結晶相の半導体を得る工程において、以降の工程で、アライメントマークとして利用可能なマーク構造を、同一の露光工程において半導体膜に形成する。
【解決手段】この発明は、光を変調して結晶化のための光強度分布を形成する光強度変調構造SPと、光強度変調構造と一体にまたは独立に設けられ、光を変調して所定形状のパターンを含む光強度分布を形成するとともに結晶化領域の予め定められた位置を示すマーク形成構造MKと、を有することを特徴とする光変調素子3に関する。この光変調素子によれば、絶縁基板上に所定厚さに堆積された半導体膜の任意の位置に、結晶核を形成し、その結晶核から所定の方向に結晶を成長させるとともに、半導体膜の任意の位置にアライメントマークAMを、同一工程で形成できる。 (もっと読む)


【課題】量産性の高い新たな半導体材料を用いた大電力向けの半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体膜中の水分または水素などの不純物を低減するために、酸化物半導体膜を形成した後、酸化物半導体膜が露出した状態で第1の加熱処理を行う。次いで、酸化物半導体膜中の水分、または水素などの不純物をさらに低減するために、イオン注入法またはイオンドーピング法などを用いて、酸化物半導体膜に酸素を添加した後、再び、酸化物半導体膜が露出した状態で第2の加熱処理を行う。 (もっと読む)


【課題】新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】絶縁表面上の結晶領域を有する酸化物半導体層と、前記酸化物半導体層と接するソース電極層およびドレイン電極層と、前記酸化物半導体層、前記ソース電極層、および前記ドレイン電極層を覆うゲート絶縁層と、前記ゲート絶縁層上の、前記結晶領域と重畳する領域のゲート電極層と、を有し、前記結晶領域は、前記酸化物半導体層の表面と略垂直な方向にc軸が配向する結晶を有する領域である半導体装置である。 (もっと読む)


81 - 100 / 830