説明

Fターム[5F152MM16]の内容

再結晶化技術 (53,633) | 半導体素子等への用途 (2,408) | 特殊な構造、動作の素子 (51) | 量子構造 (48)

Fターム[5F152MM16]に分類される特許

1 - 20 / 48


【課題】シリコン基板上に形成した、転位及びクラックの少ない窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法を提供する。
【解決手段】実施形態によれば、シリコン基板と、その上に順次設けられた、下側歪緩和層、中間層、上側歪緩和層及び機能層と、を有する窒化物半導体ウェーハが提供される。中間層は、第1下側層と、第1ドープ層と、第1上側層と、を含む。第1下側層は、下側歪緩和層の上に設けられ下側歪緩和層の格子定数よりも大きい格子定数を有する。第1ドープ層は、第1下側層の上に設けられ第1下側層の格子定数以上の格子定数を有し1×1018cm−3以上1×1021cm−3未満の濃度であり第1下側層よりも高い濃度で不純物を含有する。第1上側層は、第1ドープ層の上に設けられ第1ドープ層の格子定数以上で第1下側層の格子定数よりも大きい格子定数を有する。 (もっと読む)


【課題】ワイドバンドギャップ材料内に、接合温度低下、動作中の高電力密度化、及び定格電力密度における信頼性向上を達成する高電力デバイスを形成する。
【解決手段】SiC層10にSiO層を形成し、次いで、熱伝導率を高めるためにダイアモンド層11を形成する。そして、SiC層10の厚さを低減し、ダイアモンド層11及びSiC層10の向きを逆にしてダイアモンド11を基板とする。次いで、SiC層10上に、バッファ層16、ヘテロ構造層14及び15を形成する。 (もっと読む)


【課題】量産に用い得る厚さと面積を確保しながら、容易な生産方法でかけやわれの発生を抑制してオリエンテーションフラットを形成することを目的とする。
【解決手段】窒化ガリウム結晶体27から、ファセット15を有する硬質の立体構造物14を陵線等に平行に除去することで、欠けや割れの発生を抑制した窒化ガリウム基板を提供できる。しかも、ファセット15を有する硬質の立体構造物14の陵線等は特有の結晶方位を有し、かつ、明瞭であるので、立体構造物14の陵線等に平行に切断加工した窒化ガリウム結晶体27の切断線21をデバイス加工の基準線となるオリエンテーションフラットに用いることができる。 (もっと読む)


【課題】異種基板上に高品質半導体結晶からなる島状のGaN系半導体層を基板の湾曲を抑えて成長させることができ、しかもGaN系半導体層が極めて厚くてもクラックなどの発生を抑えることができ、大面積の半導体素子を容易に実現することができる半導体素子およびその製造方法を提供する。
【解決手段】半導体素子は、GaN系半導体と異なる物質からなる基板11と、基板11上に直接または間接的に設けられ、一つまたは複数のストライプ状の開口12aを有する成長マスク12と、成長マスク12を用いて基板11上に(0001)面方位に成長された一つまたは複数の島状のGaN系半導体層13とを有する。成長マスク12のストライプ状の開口12aはGaN系半導体層13の〈1−100〉方向に平行な方向に延在している。 (もっと読む)


【課題】 歩留まりが大幅に改善された半導体ウェハの製造方法を提供する。
【解決手段】 本発明の半導体ウェハの製造方法は、基板301上の一部にストライプ状の保護膜302を形成する保護膜形成工程と、前記保護膜形成工程後、前記基板301上における前記保護膜302形成部位以外の部位に半導体結晶を成長させて半導体層を形成する半導体層形成工程とを含み、前記基板301として、前記保護膜302の長さ方向と平行な方向のオフ角θpの絶対値|θp|が、前記保護膜302の長さ方向と直交する方向のオフ角θoの絶対値|θo|よりも小さく、且つ、|θp|≦0.2°を満たすものを用いることを特徴とする。 (もっと読む)


【課題】本発明は、信頼性が向上し、発光構造物のクラック及びひび割れなどの損傷を防止し、発光効率を向上させる発光素子の製造方法を提供するためのものである。
【解決手段】本発明に従う発光素子の製造方法は、多数のチップ領域及びアイソレーション領域を含む基板の上に多数の化合物半導体層を形成するステップと、前記各チップ領域に発光構造物を形成し、前記アイソレーション領域に緩衝構造物を形成するために前記化合物半導体層をエッチングするステップと、前記発光構造物及び前記緩衝構造物の上に伝導性支持部材を形成するステップと、レーザリフトオフ工程を用いて前記基板を除去するステップと、前記発光構造物を分離するステップと、を含み、前記緩衝構造物は前記発光構造物から離隔する。 (もっと読む)


【課題】電気的に隔離された発光ダイオードを提供する。
【解決手段】半導体発光ダイオードは、半導体基板51と、基板上にあるn型III群窒化物のエピタキシャル層52と、n型エピタキシャル層上にあり当該n型層と共にp−n接合部を形成する、III群窒化物のp型エピタキシャル層53と、n型エピタキシャル層上にありp型エピタキシャル層に隣接し、p−n接合部58の一部を電気的に隔離する抵抗性窒化ガリウム領域54とを含む。p型エピタキシャル層上に金属接点層55を形成する。方法の実施形態では、p型エピタキシャル領域上に打ち込みマスクを形成し、p型エピタキシャル領域の部分にイオンを打ち込んでp型エピタキシャル領域の部分を半絶縁性にすることによって、抵抗性窒化ガリウム境界を形成する。フォトレジスト・マスク又は十分に厚い金属層を、打ち込みマスクとして用いることができる。 (もっと読む)


【課題】基板中に形成されたトレンチ中に、単結晶のゲルマニウムまたはシリコンゲルマニウムを形成する改良された方法を提供する。
【解決手段】誘電体分離3(例えばSTI)を有する基板1を準備する工程と、基板材料1(例えばSi)のトレンチエッチング4を行う工程と、トレンチ4内への充填層5(例えばGe)の選択成長を行う工程と、略溶融温度での充填層6の加熱により、充填層5(例えばGe)の再結晶化7により達成される。 (もっと読む)


【課題】発光のブルーシフトが抑制された発光デバイスの製造に好適なIII族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法を提供する。
【解決手段】本III族窒化物結晶基板1は、III族窒化物結晶基板1の任意の特定結晶格子面のX線回折条件を満たしながら結晶基板の主表面1sからのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔d1と5μmのX線侵入深さにおける面間隔d2とから得られる|d1−d2|/d2の値で表される結晶基板の表面層の均一歪みが1.7×10-3以下であり、主表面の面方位が、結晶基板のc軸を含む面から[0001]方向に−10°以上10°以下の傾斜角を有する。 (もっと読む)


【課題】基板上に、面内と周縁部の膜厚の均一な塗布膜を形成することを目的とする。
【解決手段】単結晶ウエハ1と半導体層4と、その間の結晶格子の不整合を緩和するバッファ層3を備えた半導体基板の製造方法であって、前記単結晶ウエハの外周端部1aを被覆材2で被覆した後、前記バッファ層3を前記単結晶ウエハ1の一面側に形成する工程と、前記被覆材2を取り除いた後、前記半導体層4を前記バッファ層3上の一面側に形成すると共に、前記単結晶ウエハ1の外周端部1aから前記半導体層4の外周部4bにかけて前記半導体層4の構成材料からなる堆積物4aを堆積させる工程と、前記半導体層4上に塗布液をスピンコート法により塗布する工程と、を具備してなることを特徴とする半導体基板の製造方法を提供する。 (もっと読む)


【課題】棒状ワイヤを基板から分離させる箇所を制御でき、棒状ワイヤの長さのばらつきを小さくすることができる棒状ワイヤの作製方法を提供する。
【解決手段】この棒状ワイヤの作製方法は、Si基板1上にGaNでできた棒状ワイヤ2を形成するワイヤ形成工程と、棒状ワイヤ2を基板1から切り離す切り離し工程とを有する。上記切り離し工程は、Si基板1を選択的にエッチングする選択エッチングを含んでいる。Si基板1と棒状ワイヤ2とが異なる材料でできているので、基板1と棒状ワイヤ2との境界面で基板1から棒状ワイヤ2を容易に分離できる。 (もっと読む)


量子井戸及び隣接するバリアを含む構造を設計し及び/又は製造するための解決法が提供される。量子井戸と隣接するバリアとの間の目標バンド不連続性が、量子井戸及び/又はバリア用のドーパントの活性化エネルギーと一致するように選択される。例えば、目標バレンスバンド不連続性は、隣接するバリア中のドーパントのドーパントエネルギーレベルが、量子井戸に関するバレンスエネルギーバンド端及び/又は量子井戸に関するバレンスエネルギーバンド中の自由キャリアについての基底状態エネルギーと一致するように選択されることがある。量子井戸及び隣接するバリアは、実際のバンド不連続性が目標バンド不連続性に対応するように形成されることがある。 (もっと読む)


【課題】第1基板から窒化物半導体層を容易に剥離する。
【解決手段】SiC基板101の表面で単層又は複数層のグラフェン層111が成長する工程と、グラフェン層との界面で、共有結合性を有することなく、原子レベルのポテンシャルの規則性のみを用いた結合力を伴って窒化物半導体層114が形成される工程と、窒化物半導体層114とグラフェン層111aとの間、あるいはグラフェン層相互間111a,111b,111cのポテンシャルによる接合力以上の力で、窒化物半導体層がSiC基板から剥離される工程とを備える。また、剥離された窒化物半導体層が第2基板130の表面に接合される。 (もっと読む)


非極性または半極性の(Ga、Al、In、B)N基板上の(Ga、Al、In、B)N薄膜の成長形態を改良する方法であって、(Ga、Al、In、B)N薄膜は、非極性または半極性の(Ga、Al、In、B)N基板あるいはテンプレート上に直接成長させられ、成長の際に使用されるキャリアガスの一部は、不活性ガスから構成される。非極性または半極性の窒化物LEDおよびダイオードレーザは、本発明によって成長させられる平滑(Ga、Al、In、B)N薄膜上に成長させられてもよい。
(もっと読む)


【課題】 安定した表面を有するIII族窒化物基板を提供する。
【解決手段】 一実施形態に係るIII族窒化物基板は、表面層を有している。当該表面層は、3at.%の〜25at.%の炭素を含み、且つ、5×1010原子/cm〜200×1010原子/cmのp型金属元素を含んでいる。このIII族窒化物基板は、安定した表面を有するものとなる。 (もっと読む)


【課題】基板と格子整合し、キュリー温度Tcが室温であるII−IV−V族化合物磁性半導体材料で量子井戸層あるいは強磁性電極を構成した磁性半導体素子を提供する。
【解決手段】
磁性半導体素子10は、InPからなる基板11と、Mnが添加されたZnSnAsからなりかつ基板11の上に結晶成長された量子井戸層13と、InAlAs及び/又はInGaAsからなり基板11の上に結晶成長されかつ量子井戸層13を挟持する一組の障壁層12,14と、を備える。障壁層12,14にInAlAsを採用した場合、Al組成は0.43〜0.53%であることが好ましくは、InGaAsを採用した場合、Ga組成が0.42〜0.52%であることが好ましい。 (もっと読む)


【課題】金属酸化物半導体(MOS)デバイス中の、GeやIII−V化合物(例えばGaAsまたはInGaAs)のような高移動度半導体化合物チャネル中の、フェルミレベルピンニング(FLP)を低減(回避)する方法の提供。
【解決手段】半導体化合物11上のゲート誘電体19上にゲート電極20を形成し、水素アニール21を実施する。水素はゲート電極のPtやPdのような貴金属による触媒作用により原子状水素を形成しアニールを行い半導体化合物11とゲート誘電体19との界面を界面をパッシベートし、更には欠陥を回復する。 (もっと読む)


本発明の態様は、量子ドット、複数の量子ドットなどを製造する方法を提供する。 (もっと読む)


【課題】III族窒化物半導体層の結晶性が高いIII族窒化物半導体層貼り合わせ基板を提供する。
【解決手段】本III族窒化物半導体層貼り合わせ基板の製造方法は、III族窒化物半導体基板20の一方の主表面20mから所定の深さDの領域に水素およびヘリウムの少なくともいずれかのイオンIを注入する工程と、III族窒化物半導体基板20の主表面20mに異種基板10を貼り合わせる工程と、III族窒化物半導体基板20をイオンIが注入された領域20iにおいて分離することにより、III族窒化物半導体層貼り合わせ基板1を得る工程と、III族窒化物半導体層貼り合わせ基板1を、窒素含有ガスNの雰囲気下700℃以上でアニールする工程と、を備える。 (もっと読む)


【解決手段】 微小電子デバイスを形成する方法および対応する構造を記載する。当該方法は、基板にGaSb核生成層を形成する段階と、GaSb核生成層にGa(Al)AsSbバッファ層を形成する段階と、Ga(Al)AsSbバッファ層にIn0.52Al0.48As下側バリア層を形成する段階と、In0.52Al0.48As下側バリア層にInAl1−xAsグレーデッド層を形成する段階とを備えるとしてよい。当該方法によれば、欠陥の少ない、勾配をつけたInGaAsベースの量子井戸構造を有するデバイスを製造することができる。 (もっと読む)


1 - 20 / 48